
ibm.com/redbooks

DB2 II: Performance
Monitoring, Tuning and
Capacity Planning Guide

Nagraj Alur
Miriam Goodwin
Hajime Kawada
Roger Midgette

DB Shenoy
Ron Warley

DB2 Information Integrator V8.2
performance drivers and best practices

Performance problem
determination scenarios

Capacity planning

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 II: Performance Monitoring, Tuning and
Capacity Planning Guide

November 2004

International Technical Support Organization

SG24-7073-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2004)

This edition applies to Version 8, Release 2 of DB2 Information Integrator (product number
5724-C74).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xv.

Contents

Figures . vii

Tables . ix

Examples. xi

Notices . xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xvii
Become a published author . xx
Comments welcome. xx

Chapter 1. DB2 Information Integrator architecture overview 1
1.1 Introduction . 2
1.2 Current business trends . 2

1.2.1 From on demand to grid computing . 3
1.2.2 From grid computing to data federation . 4
1.2.3 From data federation to information integration 5

1.3 IBM’s DB2 Information Integration overview . 6
1.3.1 Data consolidation or placement. 8
1.3.2 Distributed access (federation) . 9
1.3.3 DB2 Information Integrator products . 9

1.4 DB2 Information Integrator V8.2 . 11
1.4.1 DB2 II V8.2 overview. 11
1.4.2 DB2 II components . 15
1.4.3 Configuring the federated system . 18
1.4.4 Performance considerations . 24

1.5 DB2 Information Integrator topology considerations 26
1.5.1 Dedicated federated server. 28
1.5.2 Collocated federated server . 28

Chapter 2. Introduction to performance management. 31
2.1 Introduction . 32
2.2 Performance management . 32
2.3 Types of monitoring. 35

2.3.1 Routine monitoring . 35
2.3.2 Online/realtime event monitoring . 36

© Copyright IBM Corp. 2004. All rights reserved. iii

2.3.3 Exception monitoring. 37
2.4 Problem determination methodology. 37

Chapter 3. Key performance drivers of DB2 II V8.2 41
3.1 Introduction . 42
3.2 Compilation flow of a federated query. 44
3.3 Execution flow of a federated query . 50
3.4 Key performance drivers . 54

3.4.1 Performance factors . 57
3.4.2 Federated server considerations. 60
3.4.3 Data source considerations. 102
3.4.4 Efficient SQL queries . 109
3.4.5 Hardware and network . 112

Chapter 4. Performance problem determination scenarios 115
4.1 Introduction . 116
4.2 DB2 II hypotheses hierarchy . 119

4.2.1 DB2 II federated database server resource constraints 123
4.2.2 DB2 II resource constraints. 124
4.2.3 Federated server or remote data source. 136
4.2.4 Federated server related. 152
4.2.5 Remote data source related . 161

4.3 Monitoring best practices . 162
4.3.1 Performance considerations . 164
4.3.2 Best practices . 165

4.4 Problem scenarios. 167
4.4.1 Federated test environment . 167
4.4.2 Missing or incorrect statistics/index information 170
4.4.3 Poorly tuned sort heap and buffer pools . 206
4.4.4 Missing or unavailable MQTs . 210
4.4.5 Incompatible data types on join columns . 239
4.4.6 Pushdown problems . 272
4.4.7 Default DB2_FENCED wrapper option with DPF 339

Chapter 5. Capacity planning in an existing DB2 II environment 377
5.1 Introduction . 378
5.2 Capacity planning assumptions. 378
5.3 Capacity planning procedure. 379

5.3.1 Capacity planning procedure overview . 381
5.4 Capacity planning new applications . 427

5.4.1 Model of different profiles of queries . 427
5.4.2 Determine new application workload . 428
5.4.3 Estimate capacity for the new application . 428

iv DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Appendix A. DB2 II V8.2 performance enhancements 429
Introduction. 430
Fenced wrappers . 430
Parallelism enhancements . 432

Intra-partition parallelism in a non-DPF environment 432
Inter-partition parallelism in a DPF environment with local data 433
Inter-partition parallelism in a DPF environment without local data 434

Updating nickname statistics . 436
Cache tables . 436
Informational constraints . 438
Snapshot monitor support . 439
Health Center alerts . 439

Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator . . . 441
Brief review of the DB2 EXPLAIN facility . 442
db2exfmt overview . 448

EXPLAIN INSTANCE section . 449
SQL STATEMENT section . 450
Access plan graph. 453
OPERATOR DETAILS section . 455
Objects section . 457
Complete db2exfmt output . 458

Federated test environment . 462
db2exfmt examples involving DB2 II . 463

Join of nicknames referencing Oracle and SQL server. 469
INTRA_PARALLEL = YES (intra-partition enabled) 489
Database Partition Feature (DPF) with FENCED = ‘N’ 516
Database Partition Feature (DPF) with FENCED = ‘Y’ 534
DB2_MAXIMAL_PUSHDOWN = ‘N’ . 554
DB2_MAXIMAL_PUSHDOWN = ‘Y’ . 586
SQL INSERT/UPDATE/DELETE . 615

Related publications . 631
IBM Redbooks . 631
Other publications . 631
Online resources . 632
How to get IBM Redbooks . 633
Help from IBM . 633

Index . 635

 Contents v

vi DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figures

1-1 Data federation concept . 5
1-2 Overview of IBM products for information integration 10
1-3 Data federation technology . 11
1-4 Components of a federated system . 13
1-5 Basic steps in configuring a federated system. 19
1-6 DB2 II topologies . 27
2-1 Performance management cycle . 34
2-2 A typical problem determination methodology . 38
3-1 Federated query processing flow. 43
3-2 SQL Compiler query analysis flow . 44
3-3 Query execution flow . 52
3-4 Performance considerations overview . 58
3-5 Federated query performance elements . 59
3-6 Federated serer considerations topics. 61
3-7 Wrapper architecture - Fenced and trusted . 63
3-8 Query optimization topics. 68
3-9 Nickname statistics collected by data source . 72
3-10 MQT/AST look-aside concept . 86
3-11 Cache table concept . 88
3-12 Overflowed sorts . 93
3-13 Non-overflowed piped sorts . 94
3-14 Database manager snapshot showing sort monitor elements 97
3-15 Database snapshot showing sort monitor elements 97
4-1 A typical DB2 II environment and hypotheses hierarchy 117
4-2 DB2 II hypotheses hierarchy . 120
4-3 Triggering event determines entry into DB2 II hypotheses hierarchy . 122
4-4 Statistics Update in DB2 Control Center . 153
4-5 DB2 snapshot monitor syntax and data collection 163
4-6 Federated test environment . 168
4-7 TPCD tables. 169
4-8 ping DB2 II federated server and Oracle data source server (azov) . . 172
4-9 vmstat command output from the federated server 173
4-10 iostat command output from federated server 174
4-11 lsps command output from the federated server 174
4-12 ps -ef command output from the federated server 175
4-13 ps aux command from federated server . 175
5-1 Capacity planning procedure overview . 382
5-2 Contents of FEDWH.FEDWH_SNAPSHOT_DYN_SQL table (1 of 3). 393

© Copyright IBM Corp. 2004. All rights reserved. vii

5-3 Contents of FEDWH.FEDWH_SNAPSHOT_DYN_SQL table (2 of 3). 394
5-4 Contents of FEDWH.FEDWH_SNAPSHOT_DYN_SQL table (3 of 3). 395
5-5 FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL table (1 of 4) 407
5-6 FEDWH.FEDWH_SNAPSHOT_DYN_ INTERVAL table (2 of 4). 408
5-7 FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL table (3 of 4) 409
5-8 FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL table (4 of 4) 410
5-9 Contents of FEDWH.FEDWH_FEDSQL_INTERVAL (1 of 2) 413
5-10 Contents of FEDWH.FEDWH_FEDSQL_INTERVAL (2 of 2) 414
5-11 Contents of FEDWH.FEDWH_INSTANCE_REPORT 417
5-12 Contents of FEDWH.FEDWH_FEDSQL_REPORT table (1 of 2) 418
5-13 Contents of FEDWH.FEDWH_FEDSQL_REPORT table (2 of 2) 419
5-14 Chart of maximum connections per monitoring interval 423
5-15 Chart of number of executions per query. 424
A-1 Wrapper architecture - Fenced and trusted . 431
A-2 Intra-partition parallelism on SMP systems . 432
A-3 Inter-partition parallelism in a DPF environment with local data 433
A-4 Inter-partition parallelism in DPF environment with nickname data . . . 435
A-5 Cache table concept . 437
B-1 Relationship of the main EXPLAIN tables . 446

viii DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Tables

1-1 Key global catalog contents for remote data sources 16
3-1 Key performance drivers - non-DPF DB2 in relation to DB2 II. 55
4-1 Typical problem areas associated with DB2 II performance 118
4-2 Join strategies . 158
4-3 Snapshot monitor switches . 162
4-4 TPCD tables cardinality . 169
5-1 Memory utilization versus maximum concurrent connections 426
5-2 Query profile model . 428
B-1 DB2 EXPLAIN facility . 443
B-2 EXPLAIN tables . 444
B-3 Operators in the access plan . 446
B-4 db2exfmt output focus areas . 463
B-5 DB2 II server options . 464

© Copyright IBM Corp. 2004. All rights reserved. ix

x DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Examples

3-1 User query involving join of two nicknames . 65
3-2 db2exfmt output showing no CPG exploitation 65
3-3 db2exfmt output showing CPG exploitation . 66
3-4 NNSTAT stored procedure . 69
3-5 Database snapshot showing intra_parallelism monitor element 76
3-6 Snapshot showing block remote cursor information 101
3-7 db2exfmt output with query fragment in RMTQTXT of SHIP operator. 102
3-8 Writing outer joins more efficiently . 111
4-1 dbm snapshot for connections . 126
4-2 db snapshot for connections . 127
4-3 dbm snapshot for sorting . 128
4-4 db snapshot for sorting . 130
4-5 db snapshot for locking . 131
4-6 db snapshot for buffer pools . 132
4-7 db snapshot for catalogcache_sz and pckcachesz 134
4-8 Dynamic SQL snapshot . 136
4-9 Sample db2exfmt output with a SHIP operator and RMTQTXT field. . 138
4-10 DBM CFG parameter settings affecting connections. 176
4-11 DB CFG parameter settings affecting connections 177
4-12 DBM snapshot for connection information . 177
4-13 DB snapshot for connection information . 178
4-14 DB and DBM CFG parameters affecting sorting 179
4-15 DBM snapshot for sorting information . 179
4-16 DB snapshot for sorting information. 179
4-17 Buffer pool snapshot information . 180
4-18 Application snapshot . 182
4-19 Problem query . 184
4-20 Dynamic SQL snapshot . 184
4-21 db2exfmt output for the problem query . 186
4-22 db2batch command . 194
4-23 db2batch output . 194
4-24 Update nickname statistics from command line. 197
4-25 Nickname index specifications. 197
4-26 db2exfmt after nickname statistics updated. 198
4-27 Routine monitoring snapshot information . 206
4-28 DB and DBM CFG parameters affecting sorting 208
4-29 Default BP size . 208
4-30 DBM snapshot for sorting information . 208

© Copyright IBM Corp. 2004. All rights reserved. xi

4-31 Adjust SHEAPTHRES and SORTHEAP configuration parameters . . . 209
4-32 Problem query . 211
4-33 Dynamic SQL snapshot . 212
4-34 db2exfmt output for the problem query . 214
4-35 MQT definition for ORDERSMQT . 229
4-36 db2exfmt output with MQT. 230
4-37 Dynamic SQL snapshot with ORDERSMQT . 238
4-38 Problem query . 240
4-39 Dynamic SQL snapshot . 240
4-40 db2exfmt output for the problem query . 242
4-41 Data types for nickname join columns before ALTER 259
4-42 Statistics for nickname join columns before ALTER 261
4-43 ALTER NICKNAME statement. 262
4-44 Data types for nickname join columns after ALTER 262
4-45 Statistics for nickname join columns after ALTER 262
4-46 Manually update HIGH2KEY and LOW2KEY values. 263
4-47 db2exfmt of problem query after fixing mismatched data types. 264
4-48 Problem query . 273
4-49 Dynamic SQL snapshot . 274
4-50 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘N’ 278
4-51 Alter the wrapper option DB2_MAXIMAL_PUSHDOWN to ‘Y’ 310
4-52 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘Y’ 310
4-53 Problem query . 340
4-54 Dynamic SQL snapshot . 340
4-55 db2exfmt output of problem query . 341
4-56 Show wrapper option . 355
4-57 Alter the wrapper option DB2_FENCED to ‘Y’ 355
4-58 db2exfmt output of problem query . 356
5-1 Set the DB2 monitor switches . 382
5-2 Create the EXPLAIN tables . 383
5-3 Create performance warehouse tables . 384
5-4 Bind db2batch with CS isolation level . 386
5-5 DBM CFG parameter settings affecting connections. 386
5-6 Checking the state of the package cache . 387
5-7 Capture dynamic SQL snapshot into performance warehouse table. . 387
5-8 Dynamic SQL snapshot . 388
5-9 Output of the operating system sar command 391
5-10 Output of the operating system vmstat command 391
5-11 High water mark value of memory utilization . 392
5-12 Capture dynamic SQL snapshot into performance warehouse table. . 392
5-13 Snapshot for maximum concurrent connections 395
5-14 Insert sar and vmstat info into FEDWH.FEDWH_INSTANCE table. . . 396
5-15 Populate the EXPLAIN tables . 397

xii DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

5-16 Sample db2exfmt output with a SHIP operator and RMTQTXT field. . 398
5-17 Link EXPLAIN output to particular monitoring interval using SNAPID . 405
5-18 Compute metrics for the monitoring interval and store 405
5-19 Summarize monitored intervals . 411
5-20 Populating the utilization reports . 416
5-21 db2 batch output . 420
B-1 Sample federated SQL statement . 448
B-2 EXPLAIN INSTANCE section . 449
B-3 STATEMENT section. 450
B-4 Access Plan section. 453
B-5 OPERATOR DETAILS section . 455
B-6 Objects section . 457
B-7 db2exfmt output for the sample federated statement 458
B-8 db2exfmt output - Join of nicknames . 469
B-9 db2exfmt output for intra-partition parallelism enabled 490
B-10 db2exfmt output for trusted wrapper . 516
B-11 db2exfmt output for fenced wrapper . 534
B-12 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘N’ 554
B-13 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘Y’ 586
B-14 db2exfmt output for SQL INSERT . 615
B-15 db2exfmt output for SQL UPDATE . 624
B-16 db2exfmt output for SQL DELETE. 627

 Examples xiii

xiv DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. xv

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DB2 Connect™
DB2 Universal Database™
DB2®
DRDA®
ibm.com®
Informix®

IBM®
IMS™
iSeries™
OS/390®
pSeries®
Redbooks™
Redbooks (logo) ™

Tivoli®
WebSphere®
xSeries®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

xvi DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Preface

This IBM Redbook will help you develop, monitor, tune, and size DB2®
Information Integrator Version 8.2 applications in the AIX® and Windows®
environments.

This publication is aimed at DBAs responsible for managing the performance of a
DB2 Information Integrator environment.

This publication is organized as follows:

� Chapter 1 provides an overview of DB2 Information Integrator, and describes
the pros and cons of implementing different configurations in a typical
customer environment.

� Chapter 2 provides an overview of performance management in general, as
well as specific considerations that apply to a DB2 Information Integrator
environment.

� Chapter 3 discusses the key performance drivers of a DB2 Information
Integrator environment, and provides best practices recommendations for
achieving optimal performance. This will include a description of the tools
available to monitor and tune DB2 Information Integrator environments.

� Chapter 4 describes a rigorous approach to performance problem diagnosis
in a DB2 Information Integrator environment, and applies this approach in
diagnosing a number of commonly encountered performance problems in
typical customer environments.

� Chapter 5 describes an approach for performing capacity planning of an
existing DB2 Information Integrator environment.

� Appendix A provides an overview of DB2 Information Integrator Version 8.2
performance enhancements.

� Appendix B provides EXPLAIN output of various queries in a federated
environment, and discusses key items in the EXPLAIN output to focus on
from a performance perspective.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

© Copyright IBM Corp. 2004. All rights reserved. xvii

Nagraj Alur is a Project Leader with the IBM® International Technical Support
Organization, San Jose Center. He holds a Masters Degree in Computer
Science from the Indian Institute of Technology (IIT), Mumbai, India. He has
more than 28 years of experience in DBMSs, and has been a programmer,
systems analyst, project leader, consultant, and researcher. His areas of
expertise include DBMSs, data warehousing, distributed systems management,
and database performance, as well as client/server and Internet computing. He
has written extensively on these subjects and has taught classes and presented
at conferences all around the world. Before joining the ITSO in November 2001,
he was on a two-year assignment from the Software Group to the IBM Almaden
Research Center, where he worked on Data Links solutions and an eSourcing
prototype.

Miriam Goodwin is an IT Specialist in Dallas, TX specializing in technical sales
support for data management products. She has worked with DB2 UDB on all
platforms for several years in technical sales support, implementation services,
database administration, and application programming roles. Miriam has worked
at IBM for nine years, and with DB2 Information Integrator since the original
release of the Data Joiner product in the mid-1990s. Prior to joining IBM, Miriam
worked with DB2 and other IBM database management products for 10 years for
various IBM customers in a variety of roles.

Hajime Kawada is an IT Specialist providing technical sales support for
information management products in Japan, with particular emphasis on DB2
Information Integrator. He has conducted performance and functional tests with
DB2 Information Integrator, and has taught seminars on it. Prior to joining IBM,
he had five years of experience developing solutions using Oracle and other
databases.

Roger Midgette is a Sr. Systems Engineer with Maricom Systems, Incorporated,
a Maryland-based Information Technology solutions provider. Roger has over 25
years experience with large-scale enterprise communications and database
systems. His successful long-term career with IBM and subsequent positions
with Mitre Corporation and The Fillmore Group have provided him with
experience in a variety of technical marketing, product development, technical
support, and training roles. Roger's broad background has allowed him to assist
national, international, governmental, and commercial organizations in
implementing complex data management solutions. Roger is currently focusing
on database middleware, including DB2 Information Integrator and DB2
Connect™, utilizing his understanding of the entire IT environment. He has
presented data management seminars and classes, published DB2 technical
documents, and authored DB2 Internet-based tutorials. He holds a Masters
Degree in Information Technology from the University of Maryland and is an IBM
DB2 UDB Certified Solutions Expert - Database Administration and DRDA®.

xviii DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

DB Shenoy is a Certified Consulting Software IT Specialist for IBM Information
Management software, based in Menlo Park, CA. He has over 12 years of
experience in relational database systems and holds a Bachelor's degree in
Computer Science from Karnatak University, India. DB has extensive experience
with DB2 UDB, Information Integrator, and Informix® technologies.

Ron Warley has spent the last 23 years working in IBM technical software
support, both as a Systems Engineer for 10 years and in his current role as a
Certified Consulting Software IT Specialist for 13 years. Prior to IBM, Ron
worked for the US Government (Army) for eight years in Information Technology
doing complex data simulation for the Department of Defense. Ron has had
extensive DB2 experience as an IBM Systems Engineer and Software IT
Specialist on many platforms: Linux and Windows NT/2000 on iSeries™,
zSeries®, SUN Solaris, pSeries® AIX, and HP-UX. Ron has several DB2 product
certifications, and specializes in DB2 Business Intelligence solutions with DB2
middleware products such as DB2 Information Integrator.

Thanks to the following people for their significant contributions to this project:

Anjali Betawadkar-Norwood
Aakash Bordia
Susanne Englert
Farnaz Erfan
Doreen Fogle
Lan Huang
Eileen Lin
Robin Noble-Thomas
Kiran Potu
Micks Purnell
Yang Sun
Ioana-mihaela Ursu
Swati Vora
Tian Zhang
IBM Silicon Valley Laboratory

Simon Harris
IBM United Kingdom

Xiaoyan Qian
Calisto Zuzarte
IBM Toronto Laboratory

Bertrand Dufrasne
Bart Steegmans
International Technical Support Organization, San Jose Center

 Preface xix

Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

xx DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. DB2 Information Integrator
architecture overview

In this chapter we briefly describe the business needs driving the need for
information integration, and IBM’s response to this demand with its DB2
Information Integrator family of products. We introduce the IBM DB2 Information
Integrator family of products and focus on DB2 Information Integrator since it is
the focus of this publication.

The topics covered are:

� Current business trends
� IBM’s DB2 Information Integration overview
� DB2 Information Integrator V8.2
� DB2 Information Integrator topology considerations

1

© Copyright IBM Corp. 2004. All rights reserved. 1

1.1 Introduction
A number of business trends are driving the need for integration of data and
processes across employees, customers, business partners, and suppliers. The
inherent heterogeneity of hardware and software platforms in intranets and
extranets presents unique challenges that must be overcome in order to gain a
competitive advantage in the global economy.

In this chapter we discuss the current business trends fueling integration
demands, IBM’s DB2 Information Integrator solution, and IBM’s federated DB2
Information Integrator V8.2 offering.

1.2 Current business trends
To keep up with the evolution of e-business computing, companies in every
industry are being challenged to act—and react—on demand. Responding to any
customer demand, each market opportunity and every external threat requires
integration between people, processes, and information—this integration must
extend across the company, and across partners, suppliers, and customers.

Integration, automation, and virtualization are the three key elements of this
on-demand operating environment:

� Integration is the efficient and flexible combination of data to optimize
operations across and beyond the enterprise. It is about people, processes,
and information.

� Automation is the capability to increasingly automate business processes
with the ultimate goal of self-regulation, thereby reducing the complexity of
data management to enable better use of assets.

� Virtualization provides a single, consolidated view of and easy access to all
available resources in a network, no matter where the data resides, or the
type of data source.

IBM has identified five types of integration that are based on an open services
infrastructure. You can use these types of integration together or separately to
solve business issues. The following five types of integration represent the

Note: IBM defines an on demand business as an enterprise whose business
processes integrate end-to-end across the company with key partners,
suppliers, and customers in order to respond with speed to any customer
demand, market opportunity, or external threat.

2 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

various integration challenges that face businesses today—with information
integration being at the core of these integration types.

� User interaction

A user can work with a single tailored user interface, which is available
through virtually any device, with full transactional support. The results of the
user's interaction are integrated into multiple business systems.

� Process integration

A business can change how it operates through modeling, automation, and
monitoring of processes across people and heterogeneous systems—both
inside and outside the enterprise.

� Application connectivity

Applications can connect to one another so that they share and use
information for better use at the enterprise level.

� Build to integrate

Users can build and deploy integration-ready applications by using Web
services and existing assets. You can integrate new solutions with existing
business assets.

� Information integration

Diverse forms of business information can be integrated across the
enterprise. Integration enables coherent search, access, replication,
transformation, and analysis over a unified view of information assets to meet
business needs.

In the following subsections, we describe how the success of an on demand
business enterprise is significantly dependent upon a seamless and scalable
information integration infrastructure.

� From on demand to grid computing
� From grid computing to data federation
� From data federation to information integration

1.2.1 From on demand to grid computing
Grid computing is distributed computing taken to the next evolutionary level. The
grid provides an infrastructure on which to support a large collection of
communication resources, such as hardware and software.

The standardization of communications between heterogeneous systems
created the Internet explosion. The emerging standardization for sharing
resources, along with the availability of higher bandwidth, is driving a potentially
equally large evolutionary step in grid computing.

 Chapter 1. DB2 Information Integrator architecture overview 3

One major function of the grid is to better balance resource utilization.

An organization may have occasional unexpected peaks of activity that demand
more resources. If the applications are grid enabled, the application workload
can be moved to under-utilized machines during such peaks. In general, a grid
can provide a consistent way to balance workloads on a wider federation of
resources.

1.2.2 From grid computing to data federation
An increasing number of grid applications manage very large volumes of
geographically distributed data. The complexity of data management on a grid is
due to the scale, dynamism, autonomy, and distribution of data sources.

One way of accessing diverse business information from a variety of sources and
platforms is through data federation.

Data federation is the ability to transparently access diverse business data from
a variety of sources and platforms as though it were from a single resource. A
federated server may access data directly, such as accessing a relational
database, or accessing an application that creates and returns data dynamically
(such as a Web service). Figure 1-1 on page 5 shows the federated approach to
information integration as providing the ability to synchronize distributed data
without requiring that it be moved to a central repository.

4 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 1-1 Data federation concept

Based on ongoing research investments and proven data management
technologies in areas such as relational data, XML, content management,
federation, search, and replication, IBM has developed the integrated
infrastructure shown in Figure 1-1. Data federation uses SQL as the single
language to access all data sources. This enables all data sources to be
accessed in a standardized format, whether they are an application program,
tool, or program product.

1.2.3 From data federation to information integration
Information integration builds on the solid foundation of existing data
management solutions. Information integration provides an end-to-end solution
for transparently managing both the volume and diversity of data that exists in
enterprises and organizations today.

Increasingly business IT operations involve the need to integrate diverse and
unconnected infrastructures.

 Chapter 1. DB2 Information Integrator architecture overview 5

The following goals are critical to increasing operations efficiency and gaining a
competitive advantage:

� Integrate seamlessly with new businesses and link packaged applications
with legacy systems.

� Control the accelerating costs of managing disparate systems and integrating
across heterogeneous pockets of automation.

� Mitigate shortages of people and skills while quickly reaching new markets.

� Implement solutions that efficiently access and manage information across
product and industry boundaries.

1.3 IBM’s DB2 Information Integration overview
Today, any but the simplest of business tasks require the use of information from
the variety of data sources that businesses have built over many years. These
sources may be local or remote, on the intranet, extranet, or internet. The data
may be stored in any of a variety of formats such as relational or non-relational
databases, flat files, and unstructured content stores. The data may be current or
point-in-time copies. Often, the users need both read and write access to these
sources.

This complex and dynamic environment presents significant challenges to
business users and applications, as well as to the IT people who must maintain
and manage it.

The underlying principle of information integration is for users to be able to see
all of the data they use as if it resided at a single source. Information integration
technology shields the requester from all the complexities associated with
accessing data in diverse locations, including connectivity, semantics, formats,
and access methods. Using a standards-based language such as structured
query language (SQL), extensible markup language (XML) through SQL/XML, or
a standard Web services or content API, information integration middleware
enables users, or applications acting on their behalf, to access information
transparently without concern for its physical implementation.

The goal of providing an integrated view of information can be achieved in two
ways, as follows:

1. Data consolidation or placement, which involves moving the data to a more
efficient or accessible location

Important: IBM’s vision of information integration is to significantly reduce or
even eliminate these issues.

6 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Consolidating data into a single physical store has been the best way to
achieve fast, highly available, and integrated access to related information.
Creating a single physical copy lets businesses meet access performance or
availability requirements, deliver snapshots that are point-in-time consistent,
and provide sophisticated transformation for semantic consistency.
Consolidated data stores, which are typically managed to extract, transform,
load (ETL) or replicate processes, are the standard choice for information
integration today.

However, these consolidated stores have some drawbacks, as follows:

– They are expensive—racking up significant additional administration,
server and storage costs.

– The latency between the copy and the source of record can be a problem
when you need the most current data.

– Rich content such as documents, images, or audio is typically not
included.

2. Distributed access, which involves providing distributed access to data
through data access or federation

Distributed access corresponds to the emerging category of technology
called enterprise information integration (EII), which addresses some of the
shortfalls of data consolidation or placement. EII represents middleware
technology that lets applications access diverse and distributed data as if it
were a single source, regardless of location, format, or access language.
Access performance will typically be slower than for consolidated stores
because the query may have to gather information from distributed locations
across the network rather than access a single, local copy of data.

However, the benefits of EII include:

– Reduced implementation and maintenance costs because you do not
have the additional hardware (server and storage), skills, and personnel
costs.

– Access to current data from the source of record.

– Combining traditional data with mixed-format data.

– Access to copy-prohibited data based on data security, licensing
restrictions, or industry regulations that restrict data movement; for
example, some European countries prohibit commingling a customer’s
personal data with account data in a single database. But you can
materialize a single image of the data by federating them at the time of
access.

 Chapter 1. DB2 Information Integrator architecture overview 7

Both data consolidation or placement and distributed access data consolidation
serve distinct problem domains and are very complementary. They may be used
alone or together to form the heart of what is required to integrate information.

Both approaches require extensive and largely common supporting functionality.
Neither distributed access nor data consolidated or placement can exist without
mapping and transformation functionality, which ensure data integrity.
Furthermore, depending on the business requirement, the same data may need
to be consolidated in some cases and federated in others. Therefore, a common
set of transformation and mapping functionality is required in both cases to
maintain consistency across the data used by the business.

In the following sections, we briefly describe scenarios where data consolidation
and distributed access are appropriate, and then provide an overview of DB2
Information Integration products.

1.3.1 Data consolidation or placement
Data consolidation or placement brings together data from a variety of locations
into one place, in advance, so that a user query does not always need to be
distributed. This approach corresponds to ETL and replication functionality. You
can use ETL to build a warehouse, replication to keep it automatically updated
on a scheduled basis, and extend it with federation for queries that require data
that did not make sense to put in the warehouse.

Scenarios where ETL or replication approaches are appropriate include the
following:

� Access performance or availability requirements demand centralized or local
data.

� Complex transformation is required to achieve semantically consistent data.

� Complex, multidimensional queries are involved.

� Currency requirements demand point-in-time consistency, such as at the
close of business.

Note: Distributed sources must be sufficiently consistent to make joining
the data both possible and meaningful. There must be a key on which the
data can be joined or correlated such as a customer identifier, and the
joined data must represent related topics.

8 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

1.3.2 Distributed access (federation)
Very simply, federation takes a query in one location and distributes the
appropriate parts of it to act upon the data wherever and in whatever form it
resides.

Scenarios where distributed access approaches are appropriate include the
following:

� Access performance and load on source systems can be traded for an overall
lower implementation cost.

� Data currency requirements demand a fresh copy of the data.

� Widely heterogeneous data.

� Rapidly changing data.

� Data security.

� Licensing restrictions, or industry regulations restrict data movement.

� Unique functions must be accessed at the data source.

� Queries returning small result sets among federated systems.

� Large volume data that are accessed infrequently.

1.3.3 DB2 Information Integrator products
IBM’s Information Integrator solution consists of a number of products and
technologies that fall under a solution umbrella called IBM DB2 Information
Integrator, as shown in Figure 1-2 on page 10.

 Chapter 1. DB2 Information Integrator architecture overview 9

Figure 1-2 Overview of IBM products for information integration

There two main products that fall under the federation approach are:

� DB2 Information Integrator (DB2 II)

DB2 II is targeted at the application development community familiar with
relational database application development. Applications that use SQL, or
tools that generate SQL such as integrated development environments, and
reporting and analytical tools, can now access and manipulate distributed and
diverse data through a federated data server.

� DB2 Information Integrator Classic Federation for z/OS® (DB2 IICF)

DB2 IICF supports read/write access to relational and non-relational
mainframe data sources such as IMS™, VSAM, Adabas, CA-IDMS, and
CA-Datacom.

Note: This publication only focuses on DB2 II, hence the added detail in
Figure 1-2.

IBM DB2 Information Integrator Family

Data federation Data consolidation or placement

DB2 Data Propagator

 PeopleSoft
SAP
Siebel
Table-structured files
User-defined functions
for KEGG
User-defined functions
for Life Sceiences
Web services
XML

NonRelational data *

DB2 II - DB2 Information Integrator

DB2 Warehouse Manager etc.

DB2 IICF - DB2 Information Integrator Classic Federation for z/OS
* DB2 IICF can provide DB2 II access to mainframe nonrelational data

DB2 IICF
for z/OS *

DB2 II Replication

Relational data
DB2
Informix
ODBC
Oracle
Microsoft SQL Server
Sybase
Teradata

OLE DB
BLAST
BioRS
Documentum
Entrez
HMMER
IBM Lotus
Extended
Search
Excel

ETL

10 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

1.4 DB2 Information Integrator V8.2
In this section we provide an overview of DB2 Information Integrator V8.2,
describe its main components, discuss the main steps involved in configuring a
data source, and provide a brief overview of some of the performance
considerations.

The topics covered are:

� DB2 II V8.2 overview
� DB2 II components
� Configuring the federated system
� Performance considerations

1.4.1 DB2 II V8.2 overview
DB2 II’s federated technology enables customers to abstract a common data
model across diverse and distributed data and content sources, and to access
and manipulate them as though they were a single source.

As mentioned earlier, with the data federation capability, the federated system
acts as a virtual database with remote objects configured similar to local tables,
as shown in Figure 1-3.

Figure 1-3 Data federation technology

Supports Advanced SQLSupports Advanced SQL
Recursive SQL
User Defined Functions
Common Table Expressions

DB2

Informix,
MS SQL Server
Sybase
Teradata
ODBC
Oracle

Query processorQuery processor
Execution engineExecution engine
CatalogCatalog
Client accessClient access
Transaction coordinatorTransaction coordinator
Query gatewayQuery gateway
Global optimizerGlobal optimizer

DB2 SQLDB2 SQL

Non-Relational
Data Sources

Data Federation Technology

 Chapter 1. DB2 Information Integrator architecture overview 11

With a federated system, you can send distributed requests to multiple data
sources within a single SQL statement; for example, you can join data that is
located in a DB2 UDB table, an Informix table, and an XML tagged file in a single
SQL statement.

When an application submits a query to the federated system, the federated DB2
identifies the relevant data sources, and develops a query execution plan for
obtaining the requested data. The plan typically breaks the original query into
fragments that represent work to be delegated to individual data sources, as well
as additional processing to be performed by the federated DB2 server to further
filter, aggregate, or merge the data. The ability of the federated DB2 server to
further process data received from sources allows applications to take advantage
of the full power of the query language, even if some of the information requested
comes from data sources with little or no native query processing capability, such
as simple text files. The federated DB2 server has a local data store to cache
query results for further processing if necessary.

A DB2 federated system is a special type of DBMS. A federated system consists
of the following:

� A DB2 instance that operates as a federated server.

� A database that acts as the federated database for various relational and
non-relational data sources.

� Clients (users and applications) that access the database and data sources.
A nickname is the mechanism used by the clients to reference a remote data
source object as if it were a local table.

The federated server communicates with the data sources by means of software
modules called wrappers, as shown in Figure 1-4 on page 13.

12 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 1-4 Components of a federated system

Wrappers are mechanisms by which the federated server interacts with the data
sources. The federated server uses routines stored in a library called a wrapper
module to implement a wrapper. These routines allow the federated server to
perform operations such as connecting to a data source and retrieving data from
it. The wrapper encapsulates data source information and models data as tables.
It is aware of the characteristics of the data source, and it can expose unique

 Chapter 1. DB2 Information Integrator architecture overview 13

functions. A wrapper provides the programming logic to facilitate the following
tasks:

1. Federated object registration

A wrapper encapsulates the data source characteristics from the federated
engine. A wrapper knows what information is needed to register each type of
data source.

2. Communication with the data source

Communication includes establishing and terminating connections with the
data source, and maintaining the connection across statements within an
application if possible.

3. Services and operations

Depending on the capabilities of the type of data sources that a wrapper is
meant to access, different operations are supported. The operations can
include sending a query to retrieve results, updating remote data, transaction
support, large object manipulation, input value binding, compensation1, and
more.

4. Data modelling

A wrapper is responsible for mapping the data representation of the result of
remote queries into the table format as required by the federated engine.

Wrappers are available for each type of data source. For example, if you want to
access three DB2 for z/OS database tables, one DB2 for iSeries table, two DB2
UDB for Windows tables, two Informix tables, and one Informix view, you need to
define only two wrappers: One for the DB2 data source objects and one for the
Informix data source objects. Once these wrappers are registered in the
federated database, you can use these wrappers to access other objects from
those data sources.

DB2 Information Integrator V8.2 includes the ability to federate, search, cache,
transform, and replicate data. As a federated data server, it provides out-of-the
box access to DB2 Universal Database™; IBM Informix products; as well as
databases from Microsoft®, Oracle, Sybase, and Teradata. In addition, it can
also access semi-structured data from WebSphere® MQ messages, XML
documents, Web services, Microsoft Excel, flat files, ODBC or OLE DB sources,
plus a variety of formats unique to the life sciences industry. Integrated support
for IBM Lotus® Extended Search provides the solution’s broad content access to
a variety of content repositories, including DB2 Content Manager, as well as

1 Compensation is the ability by DB2 to process SQL that is not supported by a data source. DB2
compensates for lack of functionality at the data source in two ways: One way is to ask the data
source to use one or more operations that are equivalent to the DB2 function stated in the query, and
another way is to return the set of data from the data source to the federated server and perform the
function locally.

14 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

e-mail databases, document repositories, third-party Internet search engines,
and LDAP directories. DB2 Information Integrator Classic Federation for z/OS
supports read/write access to relational and non-relational mainframe data
sources such as IMS, VSAM, Adabas, CA-IDMS, and CA-Datacom.

The power of DB2 II is in its ability to:

� Join data from local tables and remote data sources, as if all the data is
stored locally in the federated database.

� Update data in relational data sources, as if the data is stored in the federated
database.

� Replicate data to and from relational data sources.

� Take advantage of the data source processing strengths, by sending
distributed requests to the data sources for processing.

� Compensate for SQL limitations at the data source by processing parts of a
distributed request at the federated server.

1.4.2 DB2 II components
DB2 II contains the following components:

� DB2 UDB Enterprise Server Edition (ESE) for Linux, UNIX, and Windows,
which you can use to create and manage non-partitioned or partitioned
database environments.

Note: Applications can insert, update, or delete rows in federated relational
databases; however, this is limited to single-site updates with only one-phase
commits.

Note: DB2 II V8.2 is supported on the Linux, UNIX®, and Windows platforms.

For an up-to-date and complete list of data sources supported, their
corresponding data types, their corresponding versions, and the access
method used by IBM DB2 Information Integrator V8.2 to access them, refer to
the IBM DB2 Information Integrator Installation Guide for Linux, UNIX, and
Windows, GC18-7036; and IBM DB2 Information Integrator Federated
Systems Guide Version 8.2, SC18-7364.

The IBM DB2 Information Integrator Data Source Configuration Guide
provides details on configuring access to each of the types of data sources
supported by DB2 II.

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/iiylse81.pdf

 Chapter 1. DB2 Information Integrator architecture overview 15

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/iiylse81.pdf

� The relational wrappers are used for non-IBM relational databases. In DB2
UDB Enterprise Server Edition (ESE) V8 for Linux, UNIX, and Windows,
relational wrappers are required if you want to access data that is stored in
Oracle, Sybase, Microsoft SQL Server, ODBC, and Teradata data sources.

� Non-relational wrappers are used by the DB2 federated system to integrate
non-relational data sources, such as flat files and XML files; and genetic,
chemical, biological, and other research data from distributed sources.

� Global catalog is the catalog in the federated database that holds
information about the entire federated system. The global catalog holds
information about the objects (tables, indexes, functions, etc.) in the federated
database as well as information about objects (wrappers, remote servers,
nicknames and their relationships) at the data sources. The information
stored is about local and remote column names, column data types, column
default values, and index information.

DB2 Information Integrator V8.2 extends the data federation technology already
available in DB2 UDB for Linux, UNIX, and Windows.

The global catalog contains statistical information for nicknames, information on
remote indexes for nicknames, and information on some attributes of each
remote source, as shown in Table 1-1. It also it contains data type and function
mappings.

Table 1-1 Key global catalog contents for remote data sources

Note: DB2 UDB ESE provides DB2, Informix, and OLE DB data sources
federation without DB2 Information Integrator by setting the database
manager configuration parameter FEDERATED to YES. DB2 II is only
needed for federated access to the other relational sources identified.

Federated objects Catalog views Descriptions

Wrappers SYSCAT.WRAPPERS
SYSCAT.WRAPOPTIONS

Registered wrappers and their
specific options
(wraptype='R'/'N' for
Relational/Non-relational
wrapper).

Servers SYSCAT.SERVERS
SYSCAT.SERVEROPTIONS

Registered remote data sources
and their specific options.

User mappings SYSCAT.USEROPTIONS Registered user authentications
for specific servers for a DB2
user. The password setting is
stored encrypted.

16 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Nicknames SYSCAT.TABLES
SYSCAT.TABOPTIONS
SYSCAT.COLUMNS,
SYSCAT.COLOPTIONS
SYSCAT.INDEXES
SYSCAT.INDEXOPTIONS
SYSCAT.KEYCOLUSE

Registered nicknames are
identified with TYPE=’N’ in
SYSCAT.TABLES.
SYSCAT.TABOPTIONS stores
specific options about
nicknames.
SYSCAT.COLOPTIONS stores
specific options about
nicknames; for instance, the
server name, remote schema,
and remote table name.
SYSCAT.KEYCOLUSE stores
information about primary key.

Index specifications SYSCAT.INDEXES Index specifications created for
nicknames.

Type mappings SYSCAT.TYPEMAPPINGS User-defined type mappings
used in nickname registration and
transparent DDL.
Default built-in type mappings are
not stored in these catalog views.
Mapping direction = 'F'/'R'.

Function templates SYSCAT.FUNCTIONS
SYSCAT.ROUTINES

Registered user-defined
functions. In V8,
SYSCAT.ROUTINES supersedes
SYSCAT.FUNCTIONS in V8, but
SYSCAT.FUNCTIONS still exists,
not documented.

Function mappings SYSCAT.FUNCMAPPINGS
SYSCAT.FUNCMAPOPTIONS
SYSCAT.FUNCMAPPARMOPTIONS
SYSCAT.ROUTINES

User-defined function mappings
to map a local function to a
remote function.

Passthru privileges SYSCAT.PASSTHRUAUTH Authorization to allow users to
query a specific server using
PASSTHRU.

Informational constraints SYSCAT.TABCONST Specifies informational
constraints associated with
nicknames.

Federated objects Catalog views Descriptions

 Chapter 1. DB2 Information Integrator architecture overview 17

This information is collected when the federated system is configured as
discussed in 1.4.3, “Configuring the federated system” on page 18. This
information can be queried by issuing queries against the catalog.

The DB2 query optimizer uses the information in the global catalog and the data
source wrapper to plan the optimal way to process SQL statements. Execution
plans for federated queries are chosen by the same DB2 optimizer that optimizes
regular queries; the difference is that the federated engine uses the native client
interface to each target data source, and sends queries to it in its own dialect.

1.4.3 Configuring the federated system
The DB2 federated server allows you to access and join data from relational and
non-relational data sources. By setting the database manager configuration
parameter FEDERATED to YES, the DB2 instance (without DB2 II) allows
federated access to other DB2 sources, Informix, and any OLE DB source.

Figure 1-5 on page 19 highlights the basic steps involved in configuring the
federated system. Some of these steps may be optional, depending upon the
data source being configured. Most of the steps to configure access to a data
source can be accomplished through the DB2 Control Center. Use the DB2
Command Center for the steps that require a command line.

Attention: All SYSCAT views are now read only. In order to update
information the SYSSTAT view should be used. These views can be updated
with SQL UPDATE statements to update the statistics for nicknames and
nickname index specifications.

The updateable global catalog views are:

� SYSSTAT.COLUMNS
� SYSTAT.INDEXES
� SYSSTAT.ROUTINES
� SYSSTAT.TABLES

Attention: If you need access to other non-relational or non-IBM relational
sources such as Oracle, Sybase, Teradata, or Microsoft SQL databases as
well as generic ODBC access, then you need to install DB2 II.

18 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 1-5 Basic steps in configuring a federated system

Each of these steps is described briefly:

1. Step 1 involves preparing the federated server for the data source. For the
DB2 family, this involves cataloging the node and the remote database. For
Informix, Sybase, Microsoft SQL Server, Oracle and Teradata data sources, it
involves setting up the appropriate client configuration file (for example,
Oracle tnsnames.ora, Sybase interfaces, SQL Server odbc.ini, Informix
sqlhosts, and Teradata /etc/hosts) and testing the connection to the data
source to be sure the connection is configured correctly before being used
with DB2 II.

Attention: Before configuring access to a data source, ensure that the
federated server has been set up properly. It is especially important to:

� Link the wrapper libraries to the client software (UNIX only).
� Set up the data source environment variables.

For further details, refer to the IBM DB2 Information Integrator: Installation
Guide for Linux, UNIX, and Windows Version 8.2, GC18-7036-01.

Step 8 - Test the nickname

Step 2 - Create the wrapper

Step 4 - Create the function mapping

Step 7 - Create nickname and any data mapping

Step 1 - Prepare the federated server for the data source

Step 6 - Test connection to the data source server

Step 5 - Create the user mapping (optional)

Step 3 - Create the server definition

 Chapter 1. DB2 Information Integrator architecture overview 19

2. Step 2 involves creating the wrappers in the federated server. One wrapper is
created for each type of data source to be accessed. When a wrapper is
created, it is registered in the federated database and the wrappers can now
be used to access objects from these data sources.

Wrapper options are used to configure the wrapper or to define how the
federated server uses the wrapper. Wrapper options can be set when you
create or alter the wrapper. All relational and non-relational data sources use
the DB2_FENCED wrapper option. The ODBC data source uses the
MODULE wrapper option, and the Entrez data source uses the EMAIL
wrapper option. For more details about wrapper options refer to IBM DB2
Information Integrator Federated Systems Guide Version 8.2, SC18-7364-01

3. Step 3 involves creating the server definition that defines the data source to
be accessed by the federated database. The name of the data source and
other information is part of the server definition.

– For a relational DBMS (RDBMS), it includes the type and version of the
RDBMS, the database name for the data source on the RDBMS, and
metadata that is specific to the RDBMS. A DB2 data source can have
multiple databases, and therefore a database name is required to identify
it as the target. An Oracle data source, on the other hand, can only have a
single database, and a database name is therefore not included in the
federated server definition of an Oracle data source.

– For non-relational data sources, you must register a server object because
the hierarchy of federated objects requires that specific files that you want
to access must be associated with a server object.

During the creation (or alteration) of a server definition of a relational data
source, server options can be used to set server attributes that contain
information about the data source location, connection security, and some
server characteristics that affect performance. These characteristics and
restrictions are used by the query compiler in planning the query.

CPU_RATIO, COMM_RATE, IO_RATIO, COLLATING_SEQUENCE,
PUSHDOWN, and DB2_MAXIMAL_PUSHDOWN are a few of the server
options. Some of the server options are available for all data sources, and
others are data source specific. For more details about server options refer to
IBM DB2 Information Integrator Federated Systems Guide Version 8.2,
SC18-7364-01.

20 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

4. Step 4 involves creating functional mappings if the default mappings provided
by DB2 II are inadequate and inhibit pushdown of the function to the data
source.

DB2 Information Integrator supplies default function mappings between
existing built-in relational data source functions, and their built-in DB2
counterpart functions. These default function mappings are implemented in
the wrappers.

There are several reasons for creating function mappings, as follows:

– No DB2 function corresponding to a remote data source function is
available.

– A corresponding DB2 function is available, but with a specification that is
different from that of its remote counterpart.

– A new built-in function becomes available at the data source.

– A new user-defined function becomes available at the data source.

The DB2 catalog view for function mappings is SYSCAT.FUNCMAPPINGS.

Function mappings are one of several inputs to the pushdown analysis
performed by the query optimizer. If your query includes a function or
operation, the optimizer evaluates if this function can be sent to the data
source for processing. If the data source has the corresponding function
available, then the processing of this function can be pushed down to help
improve performance.

A DB2 function template can be used to force the federated server to invoke a
data source function. Function templates do not have executable code, but
they can be the object of a function mapping. After creating a DB2 function
template, you need to create the actual function mapping between the
template and the corresponding data source function. The function template
allows DB2 II to accept the function name in SQL statements from users and
applications. Without the function template, DB2 II would return a syntax error
for an unsupported function name. The function mapping tells DB2 II that the

Attention: Server options are generally set to persist over successive
connections to the data source; however, they can be set or overridden for
the duration of a single connection.

The federated system provides the SET SERVER OPTION statement for
you to use when you want a server option setting to remain in effect while
your application is connected to the federated server. When the connection
ends, the previous server option setting is reinstated. The SET SERVER
OPTION has no effect on the IUD_APP_SVPT_ENFORCE option with
static SQL statements.

 Chapter 1. DB2 Information Integrator architecture overview 21

function is supported at a data source and what function to specify in the SQL
statement that is to be sent to the data source.

The CREATE FUNCTION MAPPING statement gives considerable control
over the scope of the mapping. For example, you can:

– Create a function mapping for all data sources of a specific type, such as
all Informix data sources.

– Create a function mapping for all data sources of a specific type and
version, such as all Oracle 9 data sources.

– Create a function mapping for all data source objects located on a specific
server.

– Disable a default function mapping; default function mappings cannot be
dropped.

For further details on function mappings, refer to the IBM DB2 Information
Integrator Data Source Configuration Guide Version 8, available as softcopy
from the Web site:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/iiylse81.pdf

5. Step 5 is an optional step and involves establishing a mapping between the
federated server user ID/password and the user ID/password of the data
source.

If this mapping is provided, this association is called a user mapping and is
used by the federated server to successfully connect to the target data
source. This association may be created for each user ID that will be using
the federated system to send distributed requests.

6. Step 6 involves checking to see whether the federated system can connect to
the target data source. A passthru session allows you to send SQL
statements directly to a data source. Ensure that proper privileges are
granted to those users who can use the passthru session for this new data
source. For example, with DB2 UDB for z/OS and OS/390®, you can
establish a passthru session and issue an SQL SELECT statement on the
DB2 system table as follows:

SET PASSTHRU servername

Note: If this mapping is not provided, the wrapper will use the user
ID/password information provided at DB2 connect time and pass it to the
data source.

Note: Each user ID accessing this nickname on DB2 II may be mapped to
the remote data source user ID.

22 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/iiylse81.pdf

SELECT count(*) FROM sysibm.systables
SET PASSTHRU RESET

In the above example, it is the SELECT statement that causes DB2 II to use
the information in the Server and User Mapping definitions to connect
under-the-covers to the data source. If the connection is successful, then DB2
II sends a SELECT statement to the data source. However, if the response to
the SELECT statement entered by the user is an error message related to the
connection attempt, this indicates that there is something wrong with the data
source client's connectivity to the data source, or with the information that
was provided in either the Server definition or the User Mapping.

7. Step 7 involves creating a nickname, which is an identifier that is used to
reference an object located at the data source that you want to access. The
objects that nicknames identify are referred to as data source objects.
Nicknames are not alternative names for data source objects in the same way
that aliases are alternative names. They are pointers by which the federated
server references these objects. Nicknames are defined with the CREATE
NICKNAME statement.

Additional metadata information can be supplied about the nicknamed object
via column options. Data mappings may also be altered or defined between
the target data source and DB2 data types in the federated server, if the
default mappings provided in the wrappers are inadequate.

Determine whether additional data type mappings need to be defined if you
are connecting to a relational data source. Specifying additional data type
mappings is necessary if you want to change the default mapping between a
DB2 data type and a remote data type. Alternative type mappings, once
created with the CREATE TYPE MAPPING statement, can be viewed in the
catalog view SYSCAT.TYPEMAPPINGS.

– Data type mappings

Data types of remote data sources must correspond to DB2 data types. An
appropriate mapping enables the federated server to retrieve data from
the data source. These default data mappings are implemented in the
wrappers. DB2 Information Integrator supplies a set of default data type
mappings such as the following:

• Oracle type FLOAT maps by default to the DB2 type DOUBLE.
• Oracle type DATE maps by default to the DB2 type TIMESTAMP.
• DB2 UDB for z/OS type DATE maps by default to the DB2 type DATE.

If you want to customize the default mapping provided by DB2 II, then you
need to create alternative data type mappings.

 Chapter 1. DB2 Information Integrator architecture overview 23

In order to use an alternative data type mapping for a nickname, you must
create this mapping prior to creating the nickname. If you create the
nickname first, you may set the appropriate mapping later, as follows:

• Alter the nickname.
• Change the default mapping types and recreate the nickname.

For further details on data mappings, refer to the IBM DB2 Information
Integrator Data Source Configuration Guide Version 8, available as
softcopy from the Web site:

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/iiylse81.
pdf

For further details on column functions and data mapping, refer to IBM DB2
Information Integrator Federated Systems Guide, SC18-7364-01.

8. Step 8 involves checking to ensure that the nickname has been configured
correctly by issuing an SQL statement against it, as follows:

SELECT count(*) FROM nickname

1.4.4 Performance considerations
Probably the most significant concern about federated technology is the issue of
acceptable performance. IBM invests heavily in global query optimization
research and development in order to improve this area.

The number one factor for good performance in a federated system is the
amount of data transferred, and number of interactions between the federated
server and data source. The two items that influence this interaction between
federated server and data source are the quality of the access plan and the
placement of the data. To help with global optimization, the DB2 Information
Integrator optimizer takes into account standard statistics from source data (such
as cardinality or indexes), data server capability (such as join features or built-in
functions), data server capacity, I/O capacity, and network speed.

The following capabilities of the DB2 optimizer have a significant impact on the
quality of the access plan generated:

� Query rewrite logic rewrites queries for more efficient processing. For
example, it can convert a join of unions, which drives a tremendous amount of
data traffic, into a union of joins, which leverages query power at the data
server and thereby minimizes data traffic back to the federated server. The
database administrator (DBA) can define materialized query tables (MQTs),

Note: This query may not be appropriate for some data sources, for
example, Lotus Extended Search.

24 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/iiylse81.pdf

which the DB2 optimizer can transparently leverage via query rewrite to
satisfy user queries.

� Pushdown analysis (PDA) capability identifies which operations can be
executed at the data server prior to returning results to the federated server.
The amount of processing and filtering that can be pushed down to the
remote data sources is key to reducing the volume of data moved between
the federated server and the data source. If the remote source supports
filtering predicates that are specified in the WHERE clause, then the
federated server pushes down these predicates to the remote server in order
to reduce the amount of data that needs to be shipped back.

� Quality of the statistics is key to enabling the global optimizer to derive an
optimal access plan. The statistics need to accurately reflect the current state
of the remote object to help the optimizer make the correct cost-based
decisions.

The actual placement of data in a federated system can also help reduce the
interaction between federated server and data source. A reducing join between
two tables at the same data source is likely to result in better performance than if
the two tables are at different sources. With co-location of the tables, the join can
be pushed down and executed at that single source, thus reducing the amount of
data and number of interactions with that source. In a federated environment,
co-location of tables may be just a consequence of fact, or may be achieved
using MQTs and cache tables.

DB2 Information Integrator has some efficient techniques for performing
federated joins, as follows:

� Nested loop join in which the results of SQL sent to one data source are
supplied as values for host variables sent in SQL to the second data source

� Use of hash-joins and merge joins to obtain a join result from two data
sources

Note: The federated server never moves data between remote data
sources—only between each remote data source and itself.

Attention: Chapter 3, “Key performance drivers of DB2 II V8.2” on page 41,
identifies the key DB2 II performance drivers, discusses the pros and cons of
each driver, and provides best practices guidelines for their use.

 Chapter 1. DB2 Information Integrator architecture overview 25

1.5 DB2 Information Integrator topology considerations
Organizations choose Information Technology (IT) platforms and topologies
based on their application characteristics, scalability, and availability
requirements. For example, for an online stock trading Web application, an
organization might choose the AIX platform for the WebSphere Application
Server (WAS) and implement both vertical and horizontal WAS clones to achieve
the desired scalability and availability requirements of the application.

The key decisions to be made for a DB2 II implementation are:

� What platform to choose: UNIX, Windows, or Linux?
� Dedicated federated server or variations of collocation with data sources?
� What are the capacity requirements of DB2 II?

In this section, we briefly describe the basic topologies and discuss the key
criteria involved in choosing between them.

Figure 1-6 on page 27 shows the two basic topologies involved, as follows:

� The dedicated federated server has no data sources in the same machine as
the federated server whatsoever.

� There are two variations of the collocated federated server, as shown in
Figure 1-6 on page 27:

– The DB2 data source is enabled to be the federated server. There may or
may not be other DB2 and non-DB2 relational data sources on the same
machine. The machine may also house non-relational data that may be
referenced in one or more federated queries.

– The federated server is in a separate DB2 instance/database on a
machine that has DB2 or non-DB2 relational data sources sharing the
machine. The machine may also house non-relational data that may be
referenced in one or more federated queries.

In general, the DB2 data source enabled to be the federated server option
performs better than the option where the federated server has its own DB2
instance/database, especially when the database is partitioned (DPF).
However, the federated server in its own DB2 instance/database provides
better fault tolerance and isolation.

26 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 1-6 DB2 II topologies

The key criteria in choosing a particular DB2 II topology are scalability,
availability, total cost of ownership, performance and access considerations.

Attention: The choice of a particular platform (UNIX, Windows or Linux) is
largely driven by scalability, availability, and total cost of ownership
considerations, and will not be discussed here.

Estimating the CPU and memory capacity requirements of a federated server
for a new application is also beyond the scope of this book. However, for
organizations that currently have DB2 II installed, Chapter 5, “Capacity
planning in an existing DB2 II environment” on page 377, documents a
procedure for developing custom query utilization profiles that may be used to
estimate the capacity requirements of new applications on the same or
different federated server.

UNIX, Windows, or Linux

Local
Non-relaional

data

COLLOCATED
Federated Server

sharing same DB2 database
 as the DB2 data source

DB2 Information Integrator

Federated
Server

Non-relational
Data Sources

Relational
Data Sources

DEDICATED
Federated Server

Federated
Server

+
DB2 data

source

UNIX, Windows, or Linux

DB2 Information Integrator

Non-relational
Data Sources

Relational
Data Sources

UNIX, Windows, or Linux

Local
Non-relaional

data

COLLOCATED
Federated Server

in a different DB2 instance/database
than the DB2 (or non-DB2) data sources

DB2 Information Integrator

Non-relational
Data Sources

Relational
Data Sources

Federated
Server

DB2 or
non-DB2

data sources

DB2 or
non-DB2

data sources

 Chapter 1. DB2 Information Integrator architecture overview 27

1.5.1 Dedicated federated server
A dedicated federated server should be considered when one or more of the
following considerations apply:

� Adequate capacity is not available on existing servers to accommodate the
resource requirements of DB2 II (refer to IBM DB2 Information Integrator
Installation Guide for Linux, UNIX and Windows Version 8.2, GC18-7036-01,
for DB2 II prerequisites), or the introduction of DB2 II would cause DB2 UDB
version/fixpak conflicts. For example, since a Windows server can only
support a single DB2 version/fixpak level, any requirement to support other
DB2 UDB version/fixpak levels on the same server will require DB2 II to be
installed on a separate Windows server to avoid conflicts. This also applies to
DB2 II in a UNIX environment since it does not support an alternate fixpak
install even though DB2 UDB does so in UNIX.

� You need to insulate the impact of DB2 II resource consumption on existing
application environments. This isolation also provides the DBA with more
flexibility in monitoring and tuning a DB2 II environment.

� Federated queries do not require access to certain non-relational data
sources such as flat files (table-structured files), and XML and Microsoft Excel
files, since such files must be located on a local or network mapped drive of
the server where DB2 II is installed.

� Federated query performance is considered to be acceptable when
accessing data from multiple remote data sources.

� The additional capital equipment, and non DB2 II licensing and administration
costs incurred for the dedicated server are acceptable.

1.5.2 Collocated federated server
A collocated federated server should be considered when the considerations
unfavorable to a dedicated federated server apply, such as the following:

� Adequate capacity is available on existing servers to accommodate the
resource requirements of DB2 II (refer to IBM DB2 Information Integrator
Installation Guide for Linux, UNIX and Windows Version 8.2, GC18-7036-01,
for DB2 II prerequisites), or the introduction of DB2 II would not cause DB2
UDB version/fixpak conflicts.

Note: Even if access is required to such non-relational data sources, it may
be possible to have a dedicated federated server access remote files by
either using nicknames on nicknames, or by using third-party software
such as an OpenLink ODBC Client.

28 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� Federated queries require access to certain non-relational data sources such
as flat files (table-structured files), XML and Microsoft Excel files, since such
files must be located on a local or network mapped drive of the server where
DB2 II is installed.

� Federated query performance is considered to be unacceptable when
accessing data from multiple remote data sources, and therefore the DB2 II
federated server needs to be collocated with the data source server that
provides maximum performance gain within the constraints of available
capacity.

� The additional capital equipment, and non DB2 II licensing and administration
costs incurred for implementing a dedicated server are unacceptable.

Note: If one of the data sources referenced is a partitioned (uses DPF)
DB2 server, then there are significant performance benefits to be gained by
enabling the partitioned database to also function as the federated server.
Besides the benefits of inter-partition parallelism for federated queries
accessing partitioned tables, the computation partition group (CPG)
feature provides the potential for inter-partition parallelism exploitation even
for queries that do not access partitioned tables. CPG and other major DB2
II V8.2 performance enhancements are described in Appendix A, “DB2 II
V8.2 performance enhancements” on page 429.

 Chapter 1. DB2 Information Integrator architecture overview 29

30 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Chapter 2. Introduction to performance
management

In this chapter we provide a general overview of performance management
concepts. We also describe the high-level tasks that a DBA typically performs to
ensure that her DB2 environment is performing adequately and meeting
previously agreed upon service-level objectives. We also discuss a possible
problem determination methodology for performing performance problem
diagnosis of DB2 environments in general, and DB2 Information Integrator (DB2
II) environments in particular.

The topics covered are:

� Performance management
� Types of monitoring
� Problem determination methodology

2

© Copyright IBM Corp. 2004. All rights reserved. 31

2.1 Introduction
One of the main objectives of an IT organization is to ensure that its
infrastructure delivers the required performance to ensure that business
objectives are continuously met in a constantly evolving and changing business
environment.

This requires the IT professional to adopt a strategy that is both proactive and
reactive to conditions and events that would tend to adversely impact IT
systems.

The proactive effort involves a number of tasks, including the following:

� Capacity planning of IT resources

� Choosing the most effective IT architecture for the current and anticipated
workload

� Adopting best practices in application design, development, and deployment

� Performing rigorous regression testing prior to deployment in a production
environment

� Performing routine monitoring of key performance indicators to forestall
potential performance problems, as well as gather information for capacity
planning

The reactive effort involves having a well-defined methodology for identifying the
root cause of a problem, and resolving the problem by applying best practices.

In the following sections we introduce the concept of performance management,
describe the different types of monitoring available, and discuss a typical
methodology for effective performance problem determination in DB2 II
environments.

2.2 Performance management
Most contemporary environments range from stand-alone systems to complex
combinations of database servers and clients running on multiple platforms.
Critical to all these environments is the achievement of adequate performance to
meet business requirements. Performance is typically measured in terms of
response time, throughput, and availability.

The performance of any system is dependent upon many factors including
system hardware and software configuration, number of concurrent users, and
the application workload.

32 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

:

These performance objectives must be:

� Realistic in that they should be achievable given the current state of the
technology available. For example, setting sub-second response times to
process millions of rows of data is not achievable.

� Reasonable in that while the technology may be available, the business
processes may not require stringent performance demands. For example,
demanding sub-second response times for analytic reports that need to be
studied and analyzed in detail before making a business decision could be
considered unreasonable.

� Quantifiable in that the objectives must use quantitative metrics (numbers,
ratios, percentages) instead of qualitative metrics (such as very good,
average, etc.). An example of quantitative metrics could be that 95 percent of
a particular transaction time must have sub-second response time, while a
qualitative metric could be that system availability should be very high.

� Measurable in that one has to be able to measure the performance in order
to determine conformance or non-conformance with performance objectives.
Units of measurement include response time for a given workload,
transactions per second, I/O operations, CPU use, or a combination of the
above. Setting a performance objective of sub-second response times for a
transaction is moot if there is no way of measuring to determine whether this
objective is being met.

Note: Performance management is a complex issue, and can be defined as
modifying the system and application environment in order to satisfy
previously defined performance objectives.

Important: Without well-defined performance objectives, performance is a
hit-or-miss exercise, with no way of delivering on any service level
agreements that may be negotiated with users.

 Chapter 2. Introduction to performance management 33

Figure 2-1 highlights the performance management cycle.

Figure 2-1 Performance management cycle

Performance management is an iterative process that involves constant
monitoring to determine whether performance objectives are being met even as
environments and workloads change over time. When performance objectives
are not being met, then appropriate changes must be made to the hardware
and/or software environment, as well as the performance objectives themselves,
in order to ensure that they will be met.

From a database perspective, performance problems can arise out of a
combination of poor application and system design; inadequate CPU, memory
disk, and network resources; and suboptimal tuning of these resources.

Besides using monitoring to determine whether performance objectives are
being met, monitoring is also used to:

� Assess the current workload of a system and track its changes over time for
capacity planning purposes.

May require exception (more
detailed) monitoring to obtain the

information necessary to determine
the cause

No

yesPerformance
Objectives
being met?

MODIFY the managed environment
and/or performance objectives

accordingly

ESTABLISH performance objectives

ANALYZE cause, EVALUATE
alternatives, and CHOOSE course

of action

MONITOR the system

Document results

DESIGN & IMPLEMENT systems to
achieve these objectives

34 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� Take a proactive approach to performance management by forestalling and
resolving potential problems that could impede the achievement of
performance objectives.

� React to unexpected problems by assisting in problem diagnosis.

2.3 Types of monitoring
There are typically three types of monitoring available to a DBA, as follows:

� Routine monitoring
� Online/realtime event monitoring
� Exception monitoring

Each of these types of monitoring is described briefly in the following sections.

2.3.1 Routine monitoring
The objectives of this type of monitoring are to:

� Collect information about the workload and stress on the system during
normal and peak periods for capacity planning purposes, as well as identify
potential performance problems down the road.

� Ascertain conformance of the system with performance objectives, and
record the deviations if any.

The key to this type of monitoring is that it involves analyzing the information
collected over a period of time (long history), and then taking corrective action if
required to address performance objectives. In other words, there can be a
significant delay between information collection and a corrective response. One
example of the results of such monitoring is a realization that the number of

Attention: In order to meet performance objectives currently and in the future,
the DBA needs to develop and execute an appropriate monitoring strategy
capable of delivering the required quality of service.

Important: Performance management can only be exercised in controlled
environments such as a production system or a regression system.

Remember, “you cannot manage what you cannot control, and you cannot
control what you cannot measure”.

Therefore, test and development systems by definition are inherently
unmanageable.

 Chapter 2. Introduction to performance management 35

transactions has been growing steadily at a 1-percent rate every week, which will
necessitate an upgrade of the server in 12 months in order to continue to meet
response time objectives.

Another characteristic of such monitoring is the critical need to minimize the
overhead it introduces given its requirement to be running constantly or during
peak periods.

In some literature, this type of monitoring is further subclassified into continuous
monitoring (for normal loads) and periodic monitoring (for peak loads).

From a DB2 perspective, routine monitoring can help identify the root causes of
potential performance problems such as:

� Buffer pool size
� Dynamic SQL cache size
� Heap sizes
� Locklist and maxlocks sizes
� Application concurrency and isolation issues
� Disorganized tables
� Outdated statistics
� Long running SQL
� Log and table space utilization

From a DB2 II perspective, routine monitoring can identify root causes of
performance problems such as:

� Missing indexes

� Missing/stale statistics

� Incompatible data types in a join

� Inappropriate DB2 II server (such as DB2_MAXIMAL_PUSHDOWN) or
wrapper definitions (such as FENCED)

2.3.2 Online/realtime event monitoring
The objective of this type of monitoring is to be on the lookout for specific events
that may either identify a specific problem, or portend problems in the near to
immediate future, in order to take prompt corrective action. Near to immediate
future implies minutes rather than hours.

The key to this type of monitoring is that it involves looking for specific events in a
short interval of time (short history) that are known to degrade performance, and
having the option to take prompt corrective action to rectify the problem. In other
words, there probably needs to be a very short delay between information
collection and a corrective response. One example of such an event is the

36 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

occurrence of an excessive number of deadlocks in a short period of time, which
need to be addressed promptly to ensure that business objectives are not being
compromised.

Here, too, the need to minimize the overhead of such monitoring is critical, given
that most problems manifest themselves at peak loads.

From a DB2 perspective, online/realtime event monitoring can help identify
potential performance problems such as:

� Deadlocks
� Long lock waits and time outs
� Long-running SQL

From a DB2 II perspective, online/realtime event monitoring can help identify
potential performance problems such as:

� Data source server status—alerts if unavailable
� Relational nickname status—whether valid or invalid

2.3.3 Exception monitoring
This type of monitoring is required when you discover or suspect a problem, and
need to identify its root cause in order to apply the appropriate corrective action
to fix the problem.

Unlike routine and event monitoring, which are planned occurrences and are
designed to have low overheads on the managed system, exception monitoring
is driven by problem situations and may impose significant overheads on the
managed system. An example of a need for exception monitoring is when the
administrator receives a significant number of user complaints about degraded
response times, or inability to access the application. The administrator then
needs to initiate a series of monitoring actions to home in on the root cause of the
problem. This typically involves coming up with a set of hypotheses that could
account for the perceived behavior, and then systematically verifying each one in
turn until the problem is diagnosed.

From DB2 and DB2 II perspectives, exception monitoring can apply to any of the
items identified via routine and online/realtime event monitoring.

2.4 Problem determination methodology
Users may experience performance problems for reasons ranging from:

� Network connectivity and bandwidth constraints
� System CPU, I/O, and memory constraints

 Chapter 2. Introduction to performance management 37

� Software configuration limitations and constraints
� Poor systems administration skills
� Poor application design
� Poor assumptions about the workload

Given the multitude of possible causes of poor performance, a systematic and
consistent approach to problem diagnosis is recommended to ensure prompt
and effective resolution of performance problems.

Figure 2-2 describes a typical sequence of steps to be followed when diagnosing
performance problems.

Figure 2-2 A typical problem determination methodology

The entire sequence of steps is triggered by events such as a user complaining
about poor response times, error messages appearing on users’ screens, alerts
or notifications on the DBA console, and alerts in routine monitoring reports.

Needs Immediate
Attention?

yesno

Formulate one or more
hypotheses

May require exception (more
detailed) monitoring to obtain the
information necessary to validate

or reject a hypothesis

Apply recommended best
practices

 System
Performing

OK?

Identify the symptoms

Identify the root cause of the
problem through hypothesis

validation

Verify the validity of each
hypothesis in turn by reviewing

key indicators

yes

Document for
future reference

Document for
future reference

no

38 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

These symptoms must be evaluated for criticality, as shown by the decision box
(“Needs immediate attention”) in Figure 2-2 on page 38.

� Symptoms that are sporadic and non-disruptive need no immediate action,
other than to potentially trigger exception, online/realtime, or additional
routine monitoring to gather additional information for possible corrective
action in the future.

� Symptoms that recur frequently and disrupt business processes require
prompt attention to avoid adverse business impact. We cover some of these
scenarios in this book.

� Catastrophic events such as a failure of the system, or the application server
or database server also need immediate attention such as an immediate
restart. These scenarios are not discussed in this book.

Based on the symptoms and a knowledge base of prior experiences (both
external and internal), one should formulate one or more hypotheses as the
potential root cause of the problem. Hypotheses should be formulated that
attempt to isolate the cause of the problem to various points in the path of the
query through DB2 II to the data source, and the path of the result back to the
user. Examining the results of the output of the tests for these hypotheses should
focus on where the performance degrades most noticeably between tests on
different points in the path.

Each hypothesis should then be tested in turn using all available metrics
associated with the application under consideration; this includes system
resources, network resources, Web application server resources, and database
server resources. Sometimes, the metrics available from routine monitoring and
online/realtime event monitoring may be inadequate to validate or reject a
particular hypothesis. In such cases, one may have to request additional
diagnostic information through more detailed monitoring levels either on the
production system itself, or an available comparable regression system. Such
monitoring is often referred to as exception monitoring.

Once a hypothesis is validated and the root cause problem has been identified,
best practices specific to the root cause problem can be applied to attempt to
resolve the problem.

 Chapter 2. Introduction to performance management 39

Once the root cause problem has been resolved, the steps executed and the
knowledge gained should become part of the knowledge base to assist in
resolving future problem situations.

Chapter 4, “Performance problem determination scenarios” on page 115,
describes a performance problem determination methodology for a typical DB2 II
environment.

Important: Best practices guidelines are based on user experiences for a
given workload and environment, and may or may not provide beneficial
results in your particular environment. Therefore, a thorough understanding of
the fundamentals of the technical architecture and design is required to
explore other alternatives, when the documented best practices fail to provide
relief.

Problem resolution in such cases tends to be an iterative process, where the
application of a best practice may result in the manifestation of new
symptoms, and the formulation of a fresh set of hypotheses.

Attention: When applying best practices recommendations, it is vital that
changes be implemented one at a time and its impact measured before
embarking on further changes. Implementing multiple changes simultaneously
may make it difficult to assess the impact of a specific change and develop a
useful knowledge base for future performance tuning efforts. A knowledge
base of all successful and unsuccessful changes in one’s environment should
be accumulated to develop best practices and recommendations for one’s own
unique environment.

40 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Chapter 3. Key performance drivers of
DB2 II V8.2

In this chapter we describe the compilation and execution flow of a federated
query, and discuss key DB2 II performance drivers, their pros and cons, and best
practices recommendations for achieving superior performance.

The topics covered are:

� Compilation flow of a federated query
� Execution flow of a federated query
� Key performance drivers

3

© Copyright IBM Corp. 2004. All rights reserved. 41

3.1 Introduction
In a federated system, data sources appear as objects (tables) in a single
collective DB2 UDB database to end users, client applications, and developers.

Users and applications interface with the federated database managed by the
federated server. The federated database contains a system catalog that
contains entries that identify data sources and their characteristics. The
federated server consults the information stored in the federated database
system catalog and the data source wrapper to determine the best plan for
processing SQL statements.

The federated system processes SQL statements as if the data sources were
ordinary relational tables or views within the federated database. As a result:

� The federated system can join relational data with data in non-relational
formats. This is true even when the data sources use different SQL dialects,
or do not support SQL at all.

� The characteristics of the federated database take precedence when there
are differences between the characteristics of the federated database and the
characteristics of the data sources:

– Suppose the code page used by the federated server is different from the
code page used by the data source. Character data from the data source
is converted based on the code page used by the federated database,
when that data is returned to a federated user.

– Suppose the collating sequence used by the federated server is different
from the collating sequence used by the data source. Any sort operations
on character data are performed at the federated server instead of at the
data source.

The basic flow of a federated query is as follows:

1. User or application submits a query.

2. The federated server decomposes the query by source.

3. The federated server and wrappers collaborate on a query plan.

4. The federated server implements the plan through query execution.

5. Wrappers communicate with the data sources and send SQL statements
through each source’s API.

6. Sources return data to the wrappers.

7. Wrappers return the data to the federated server.

8. The federated server compensates for work that the data sources are unable
to do and combines data from different sources.

42 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

9. The federated server returns the final result set to the user or application.

After a query is submitted, the federated server consults its system catalog to
determine the nicknames’ underlying data sources and their characteristics,
including the wrappers designated to access these data sources. The federated
server then devises alternative strategies, called access plans, for evaluating the
query. Such a plan might call for parts of the query to be processed by the data
sources, by the federated server, or partly by the sources and partly by the
federated server. The federated server chooses to execute the plan with the
lowest cost. Statistics and index information for nicknames are the primary input
to the optimizer for determining the costs of alternative plans and for the ultimate
decision of which plan is the lowest cost for execution.

There are two phases of query processing: Query planning and query execution.
The query planning phase occurs during compile time, while the query execution
phase occurs during runtime.

Figure 3-1 shows the flow of query processing in a federated system during
compile time and run time.

Figure 3-1 Federated query processing flow

Pushdown Analysis
 or
 RRC Protocol

 Chapter 3. Key performance drivers of DB2 II V8.2 43

In the following subsections we describe:

� Compilation flow of a federated query
� Execution flow of a federated query
� Key performance drivers in a federated environment

3.2 Compilation flow of a federated query
Figure 3-2 shows the steps involved in generating an optimal access plan for a
federated query, and some of the options that influence the individual steps
during compilation.

Figure 3-2 SQL Compiler query analysis flow

Note: The access plan for static SQL statements is created at bind time and
contained in a package. The package contains the access plan for all SQL
statements in the application program.

For dynamic SQL statements, the access plan for each SQL statement is
created when the application is executed. Therefore, compile times are
included in the response times experienced by the user.

Parse Query

Rewrite Query

Cost-based Plan
Selection

Remote SQL
Generation

Pushdown Analysis
(relational nicknames)

Code Generation,
local query portions

Check Semantics

Server options
COLLATING_SEQUENCE, PUSHDOWN, VARCHAR_NO_TRAILING_BLANKS

Function mapping in the wrappers
Nickname column options

NUMERIC_STRING

Pushdown Analysis

Some of the key options that influence
each step in the SQL Compiler

Nickname statistics and index information
Database manager configuration parameter

INTRA_PARALLEL, MAX_QUERYDEGREE
Database configuration parameter

DFT_QUERYOPT, DFT_DEGREE, SORTHEAP, buffer pool
Wrapper option

DB2_FENCED
Server options

COMM_RATE, CPU_RATIO, DB2_MAXIMAL_PUSHDOWN, IO_RATE

Optimize Access Plan

44 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

As part of the SQL Compiler process, the query optimizer analyzes a query. The
SQL Compiler develops alternative strategies, called access plans, for
processing the query. The access plans might call for the query to be:

� Processed by the data sources
� Processed by the federated server
� Processed partly by the data sources and partly by the federated server

As mentioned earlier, DB2 UDB evaluates the access plans primarily on the
basis of information about the data source capabilities and the data obtained
from the wrapper and the global catalog. DB2 UDB decomposes the query into
segments that are called query fragments. Typically it is more efficient to push
down a query fragment to a data source, if the data source can process the
fragment. However, the query optimizer takes into account other factors, such as:

� Amount of data that needs to be processed
� Processing speed of the data source
� Amount of data that the fragment will return
� Communication bandwidth

The query optimizer generates global access plans, which include SQL
fragments to access remote data, and executable code to access local DB2 data.
In order to maintain an accurate and complete cost model, the optimizer
estimates the cost of remote SQL fragments using the statistics available on the
nickname. The optimizer estimates the cost of these alternative plans, and
chooses the plan it believes will process the query with the least resource cost. If
any of the fragments are to be processed by data sources, the federated server
submits these fragments to the data sources. After the data sources process the
fragments, the results are retrieved and returned to the federated server. If the
federated server performed any part of the processing, it combines its results
with the results retrieved from the data source. The federated server then returns
all results to the client.

Each of the steps in Figure 3-2 on page 44 is described briefly, as follows. The
options listed in Figure 3-2 on page 44 are briefly described here; however, they
are described in detail in 3.4, “Key performance drivers” on page 54:

1. Parse Query involves analyzing the SQL query to check the syntax. When
parsing the query is completed, an internal representation of the query called
the query graph model is created.

2. Check Semantics involves checks to ensure that the query semantics are
correct; for example, checks to ensure that the data type of the column

Note: Pushdown analysis is only performed on relational data sources.
Non-relational data sources use the request-reply-compensate protocol.

 Chapter 3. Key performance drivers of DB2 II V8.2 45

specified for the AVG column function is a numeric data type, determining
whether the views in the query need to be merged or materialized.

3. Rewrite Query involves the SQL compiler rewriting the query to make it more
efficient, while retaining the semantic equivalence of the original query.
Categories of query rewrite include the following:

– Operation merging, where a subquery can sometimes be merged into the
main query as a join, which the optimizer has more choices to determine
the most efficient access plan

– Operation movement, where the optimizer may remove the DISTINCT
operation to reduce the cost of operation

– Predicate translation, where the SQL compiler may rewrite queries to
translate existing predicates to more optimal predicates

4. Pushdown Analysis (PDA) is bypassed unless it is a federated database
query.

The primary task of pushdown analysis is to determine whether some or all
parts of a query in the optimized SQL can be “pushed down”, that is,
processed at the remote source(s). The ability to push down depends on the
availability of the needed functionality at the remote source and on the server
options set such as COLLATING_SEQUENCE. A secondary task of
pushdown analysis is to attempt to transform the query into a form that can be
better optimized by both the DB2 optimizer and remote query optimizers.

Query rewrite invokes PDA to decide whether to enable certain traditional
rewrite for federated queries. Query rewrite also performs specific rewrite for
federated queries such as outer join reordering for maximum pushdownability,
and function template in select list pushdown.

The following DB2 II options impact the operations that can be pushed down:

– Server options COLLATING_SEQUENCE, PUSHDOWN, and
VARCHAR_NO_TRAILING_BLANKS

• Setting the COLLATING_SEQUENCE server option to “Y” tells the
federated database that the remote data source collating sequence
matches the DB2 collating sequence. Such a setting allows the
optimizer to consider pushing down order-dependent processing at a
data source for CHAR and VARCHAR columns, which can improve
performance. For other types of columns (DATE, TIME, TIMESTAMP,
INTEGER, FLOAT, DECIMAL), the optimizer always has the option to
consider pushing down order processing.

• Setting the PUSHDOWN server option to 'Y' (the default) lets DB2 UDB
consider letting the remote data source evaluate operations. If
PUSHDOWN = 'N', DB2 will send to the remote data source SQL
statements that include only SELECT with a column list. Equality

46 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

predicates (such as WHERE COL1 =), column and scalar functions
(such as MAX and MIN), sorts (such as ORDER BY or GROUP BY),
and joins will not be included in any SQL sent to the data source,
thereby having a negative performance impact.

• The VARCHAR_NO_TRAILING_BLANKS server option is for
varying-length character strings that contain no trailing blanks. The
SQL Compiler will factor in this setting when it checks for all operations
(such as comparison operations) performed on columns.

– Default function mappings are built into the data source wrappers. The
federated database will compensate for functions that are not supported
by a data source. When compensation occurs, that processing occurs at
the federated server.

– The NUMERIC_STRING nickname column option applies to character
type columns (CHAR and VARCHAR). It should only be set for those
character columns that contain only numeric values because numbers are
always sorted the same, regardless of collating sequence. On setting this
option (to 'Y'), the optimizer has the choice of performing the sort either
locally or remotely (even though the collating sequences differ), which may
lead to an improved access plan and reduce execution time.

5. Cost-based Plan Selection involves creating an executable access plan, or
section, for the query. Information about the access plan for static SQL is
stored in the system catalog tables.

Based on this analysis, the query optimizer evaluates the alternatives and
chooses the access plan based on cost. Even though an operation can be
pushed down, it does not mean that it will be, because the optimizer might

Note: The VARCHAR_NO_TRAILING_BLANKS server option is also
available as a nickname column option, which gives the DBA the
flexibility to identity specific Oracle columns that contain no trailing
blanks.

Important: If pushdown analysis determines that an operation cannot or
should not be performed at the data source, the optimizer will only be able
to evaluate plans that perform the operation at the federated server. If
pushdown analysis determines that an operation can be performed at the
data source, the optimizer is allowed to evaluate plans that perform the
operation at the data source and plans that perform the operation at the
federated server. The optimizer will then estimate the cost of the
alternative plans to determine where the operation will be performed based
on cost.

 Chapter 3. Key performance drivers of DB2 II V8.2 47

choose to not perform an operation directly on a remote data source because
it is more costly.

The following are some of the key options that impact the selection of an
optimal access path:

– Nickname statistics and index information

Defining appropriate indexes and keeping the database objects’ statistics
up-to-date is critical to the DB2 optimizer choosing the optimal access.

– Database manager configuration parameters

• Setting INTRA_PARALLEL to “YES” (the default is “NO”) allows DB2 to
use intra-partition parallelism for federated queries that access local
tables on the federated server.

• MAX_QUERYDEGREE specifies the maximum degree of
intra-partition parallelism that is used for any SQL statement executing
on this instance of the database manager. An SQL statement will not
use more than this number of parallel operations within a partition
when the statement is executed. The INTRA_PARALLEL database
manager configuration parameter must be set to “YES” to enable the
database partition to use intra-partition parallelism. The default value
for this configuration parameter is -1, which means that the system
uses the degree of parallelism determined by the optimizer; otherwise,
the user-specified value is used.

– Database configuration parameters

• DFT_QUERYOPT is used to direct the optimizer to use different
degrees of optimization when compiling SQL queries. This parameter
provides additional flexibility by setting the default query optimization
class used when neither the SET CURRENT QUERY OPTIMIZATION
statement nor the QUERYOPT option on the bind command are used.
The default level of 5 should normally not be modified.

• DFT_DEGREE specifies the default value for the CURRENT DEGREE
special register and the DEGREE bind option. The default value is 1,
which means no intra-partition parallelism. A value of -1 means the
optimizer determines the degree of intra-partition parallelism based on
the number of processors and the type of query. The degree of
intra-partition parallelism for an SQL statement is specified at
statement compilation time using the CURRENT DEGREE special
register or the DEGREE bind option. The maximum runtime degree of
intra-partition parallelism for an active application is specified using the
SET RUNTIME DEGREE command.

• SORTHEAP defines the maximum number of private memory pages to
be used for private sorts, or the maximum number of shared memory
pages to be used for shared sorts. The size of the sort heap can impact

48 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

sort performance (causing sort overflows) or the selection of a hash
join as an optimal access path. SORTHEAP is a factor when there will
be large intermediate result sets at the federated server. A large
SORTHEAP allows the intermediate result set to be contained in
memory. A small SORTHEAP will cause large intermediate result sets
to overflow from sortheap to the buffer pool for the temporary table
space. When increasing the value of SORTHEAP, you should examine
whether the SHEAPTHRES database manager configuration
parameter also needs to be adjusted.

• Buffer pool associated with the temporary table space for sort can
impact sort performance by minimizing page overflows to disk, and the
buffer pool size is considered in estimating the costs of a sort that
overflows to it. If there are large temp tables (intermediate result sets)
or large sorts that overflow from a sortheap allocation, then a large
buffer pool for the temporary table space will result in these temp tables
and sorts being held in memory, thereby avoiding disk I/O to the file
containers of the temporary tablespace. The buffer pool associated
with local tables in the federated server should also be tuned to affect
optimal access path selection.

– Wrapper option

• DB2_FENCED specifies whether the wrapper runs in fenced or trusted
mode; the default is DB2_FENCED = “N”, which is trusted. Setting the
DB2_FENCED option to “Y” (fenced mode) enables the optimizer to
use inter-partition parallelism for nickname data on a federated server.
In fenced mode operation, nickname data can be processed at various
database partitions in parallel, thereby improving query performance.

– Server options

• DB2_MAXIMAL_PUSHDOWN specifies whether the primary criteria
that the query optimizer uses when choosing an access plan should be
based on cost or based on the user requirement that as much query
processing as possible be performed by the remote data sources. For
instance, there can be cases where a plan with more interactions with
a data source takes better advantage of indexes at the data source or
enables faster join techniques (such as hash join) at the federated
server.

Setting DB2_MAXIMAL_PUSHDOWN = “Y” (default is “N”) causes
reduced network traffic to become the overriding criteria for the query
optimizer. The query optimizer uses the access plan that has the
fewest number of SHIP operators. Setting this server option to “Y”
forces the federated server to use an access plan that might not be the
lowest cost plan.

 Chapter 3. Key performance drivers of DB2 II V8.2 49

• CPU_RATIO and IO_RATIO specify how much faster or slower the data
source CPU and IO_RATIO speed is compared with the federated
server CPU speed and I/O rates, respectively. A low ratio indicates that
the data source workstation CPU (I/O) is faster than the federated
server workstation CPU (I/O). For low ratios, the optimizer will consider
pushing down operations that are CPU (I/O) intensive to the data
source. A low ratio is a value that is less than 1.

• COMM_RATE specifies the speed of the communication network
between the data source and the federated server. A low
communication rate indicates slow network communication between
the federated server and the data source. Lower communication rates
encourage the query optimizer to reduce the number of messages and
amount of data sent to or from this data source. If the COMM_RATE
server option is set to a very small number, the optimizer produces a
query requiring minimal network traffic.

6. Remote SQL Generation relates to a set of steps that generate efficient SQL
statements based on the SQL dialect of the data source.

7. Code Generation (local query portions) is the final step during which the
compiler uses the access plan and the query graph model to create an
executable access plan, or section, for the local query portions. Information
about access plans for static SQL is stored in the system catalog tables.
When the package is executed, the database manager will use the
information stored in the system catalog tables to determine how to access
the data and provide results for the query.

3.3 Execution flow of a federated query
Very simply, the federated server distributes the query fragment assigned to each
data source to the corresponding wrappers, which in turn submits the query
fragment to the data source and retrieves the results. These steps are typical,
and can vary depending on how a specific source handles the concept of a
connection, whether the source accepts requests via a query language or
through some other API, what kind of result set cursors or iterators (if any) are
supported by a source, and so forth.

The typical process of distributing a query, executing it, and returning its results is
as follows:

1. The federated server passes authorization information to the wrapper and
requests it to establish a connection to the data source.

50 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

2. The wrapper establishes the connection requested, and submits the query
fragment to the referenced data source. The wrapper then obtains an iterator
for the result set that the wrapper is to retrieve.

3. The federated server requests a row of results from the wrapper, which in
effect “forwards” the request to the data source.

4. The data source executes a portion of a query fragment in order to return the
requested row.

5. The wrapper retrieves the requested row, converts the types of the data in the
row to the federated server data types, and copies the converted types into
buffers. Results from data sources are retrieved in multi-row blocks if the
isolation level and parameters of the application permit this. So, results can be
retrieved from the data source to the federated server in blocks, and DB2 II
can send results to the application in multi-row blocks. The block size for both
is determined by the DB2 II database manager configuration parameter
RQRIOBLK. The default size is 32,767 bytes. The maximum size allowed is
65,535 bytes.

6. The federated server reads the data from the buffers and processes the data.

7. The federated server, the data source, and the wrapper repeat the three
previous steps for each successive row of results.

8. The wrapper retrieves the last row of the result set from the data source and
indicates this to the federated server.

9. If the same application references the same data source again, then the
connection to the data source will be reused. Otherwise, the connection to the
data source will be terminated when the application terminates its connection
to the federated server, or 100 commits have been processed without
reference to this data source.

10.The wrapper disconnects from the data source.

Figure 3-3 on page 52 is a pictorial representation of these steps, and highlights
some of the key options that influence performance in the execution flow.

Note: The federated server will reuse an existing connection if there
already exists an established connection within the same application to the
data source.

 Chapter 3. Key performance drivers of DB2 II V8.2 51

Figure 3-3 Query execution flow

Figure 3-3 shows that a user or application may submit a query to the federated
database that is then executed as follows:

1. Compile dynamic SQL query.

If the query is dynamic SQL then it needs to be compiled by the SQL
Compiler before execution, as discussed in 3.2, “Compilation flow of a
federated query” on page 44. Once the access plan has been generated, it
can be executed.

2. Connect to the data source and submit query fragment.

The federated server connects to the data source(s) involved using the API of
the source’s client software. The federated server’s wrapper, server, and user
mapping options like the node name, database name, remote_authid and
remote_password are required to establish this connection.

3. Process query fragment at the data source.

Once the query fragment is passed to the data source, it is executed as any
other query at that data source. This means that the data source optimizes
the query fragment using its own optimizer and then executes the query.

network

User or Application

Process query fragment
at the data source

 Perform operations
not pushed down

at the federated server

return results

Some of the key options
 that influence performance

 in the execution flow

Connect to data source
& submit query fragment

Compile dynamic SQL query

NETWORK

federated query

federated server
side

data source
side

Return results
 from the data source

to the federated server

DBM configuration parameter
SHEAPTHRES, SHEAPTHRES_SHR,
RQRIOBLK

DB configuration parameter
SORTHEAP, Buffer pool

Federated server

52 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

The query text submitted to the data source can be found in the RMTQTXT
object for the SHIP operator in the db2exfmt output for the user query, as
shown in Example 4-9 on page 138. The federated server has very limited
control over how the data source processes the query.

DB2 II provides metrics (Total execution time (sec.ms) and Rows read
fields in the dynamic cache snapshot for a remote query fragment, as shown
in Example 4-8 on page 136), that provide the total time spent executing the
query fragment at the data source, and the number of rows returned to the
federated server from the data source. This information can then be used to
direct the investigation of performance problems to the data source
administrator.

4. Return results from the data source to the federated server.

This activity is shown as spanning the federated server, network, and data
source. As already mentioned, the wrapper retrieves each row requested by
the federated server, converts the types of the data in the row to the federated
server data types, and copies the converted types into buffers.

The number of requests to the data sources and the amount of data (number
of rows and width of each row) transferred is influenced by the degree of
pushdown that occurs. The DB2_MAXIMAL_PUSHDOWN server option
tends to minimize the number of interactions with the data sources as well as
the amount of data transferred.

The DB2 database manager configuration parameter RQRIOBLK controls the
blocksize for receiving data from data sources across the network. When
large results sets are involved, the time required to transfer this data from the
data source to the federated server could be significant and can impact
performance.

Important: The amount of “traffic” between the data source and the
federated server tends to have a significant impact on the performance of
the query on the federated server.

Traffic corresponds to the number of interactions (roughly equal to the
number of requests to the data sources) and the amount of data (in the
result set) moved.

Data only moves from the data source to the federated server, never the
other way around. For example, in a query involving a two-way join with
data in two different remote sources, both sources send the data to the
federated server, and the join occurs locally.

 Chapter 3. Key performance drivers of DB2 II V8.2 53

5. Perform operations not pushed down at the federated server.

Operations not performed at the data source need to be executed at the
federated server on the results returned from the data source, before
returning results to the user or application.

These operations include predicates that were not pushed down for either
cost optimization reasons, unavailability of functionality at the data sources, or
joins with local data and other data sources.

The performance of these operations at the federated server is impacted by
the SORTHEAP DB2 database configuration parameter, SHEAPTHRES DB2
database manager configuration parameter, and the size of the buffer pool for
the temporary tablespace used in sorts. All these parameters affect the
runtime performance of the sort process.

The dynamic SQL snapshot shown in Example 4-8 on page 136 provides
information about the total execution time spent at the federated server1 and
the amount of time spent in sorting (Total sort time) for a given query. It also
provides information about buffer pool activity associated with this query.

3.4 Key performance drivers
Probably the most significant concern about federated technology is the issue of
acceptable performance.

DB2 II provides a number of capabilities to enhance federated query
performance—from the deployment of superior query optimization technologies,
to providing the DBA with effective monitoring and tuning facilities to diagnose
the performance of poorly performing queries, and a number of configuration
options to fine tune individual queries.

The key performance drivers in a federated environment depend upon whether
local data is accessed in a federated query in a collocated federated server
environment where the federated server shares the same DB2 database as the
data source environment (as described in 1.5.2, “Collocated federated server” on
page 28).

When the federated environment is collocated, all the performance
considerations that apply to a vanilla DB2 environment (without DB2 II) apply in
addition to the specific considerations of a dedicated federated server
environment, as described in 1.5.1, “Dedicated federated server” on page 28.

1 Obtained by subtracting the Total execution time (sec.ms) for the user-entered query from the
sum of all the Total execution time (sec.ms) times of all the corresponding query fragments
assuming serial access to the data sources.

54 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Table 3-1 provides a very high-level overview of the key performance drivers in a
vanilla non-DPF DB2 environment as compared to a DB2 II environment (with
and without local data). Refer to the redbook DB2 UDB ESE V8 non-DPF
Performance Guide for High Performance OLTP and BI, SG24-6432, for a
detailed discussion of DB2 performance.

Table 3-1 Key performance drivers - non-DPF DB2 in relation to DB2 II

Key performance drivers DB2
non-DPF

DB2 II
(local data)

DB2 II
(no local data)

System environment considerations

I/O placement considerations

� DB2 logs, regular tablespaces, large
tablespaces, temporary tablespaces

Yes Yes Limited

Log considerations

� Archive logging, dual logging, DB2 logs,
database configuration parameters logprimary,
logsecond, logfilsiz, logbufsz, mincommit, and
blk_log_dsk_full

Yes Yes Minimal

Monitor switch settings

� DFT_MON_BUFPOOL, DFT_MON_LOCK,
DFT_MON_SORT, DFT_MON_STMT,
DFT_MON_TABLE, DFT_MON_TIMESTAMP,
DFT_MON_UOW, HEALTH_MON

Yes Yes DFT_MON_BUFPOOL,
DFT_MON_STMT,
DFT_MON_SORT,
DFT_MON_TIMESTAMP,
HEALTH_MON

Database Manager configuration and database configuration parameters

Connection considerations

� Database manager configuration parameters
max_connections, maxagents,
max_coordagents, maxcagents,
num_poolagents, num_initagents; and
database configuration parameter maxappls

Yes Yes Yes

Buffer pool considerations (data)

� Number of buffer pools, size of buffer pools,
page size of buffer pools, block-based buffer
pools, and database configuration parameters
chngpgs_thresh, num_iocleaners,
num_ioservers

Yes Yes No

Buffer pool considerations (sort) Yes Yes Yes

 Chapter 3. Key performance drivers of DB2 II V8.2 55

Locking considerations

� Database configuration parameters locklist,
maxlocks, locktimeout, dlchktime

Yes Yes Minimal

Package considerations

� Database configuration parameter pckcachesz

Yes Yes Yes

Catalog cache considerations

� Database configuration parameter
catalogcache_sz

Yes Yes Yes

Sort considerations

� Database configuration parameters sortheap,
sheapthres, sheapthres_shr

Yes Yes Yes

Parallelism considerations

� Database manager configuration parameter
intra_parallel, max_querydegree

Yes Yes Yes

Various heaps Yes Yes Depends

RQRIOBLK Yes Yes Yes

DB2 II wrapper, server, and column options

DB2_FENCED wrapper option N/A Yes Yes

COLLATING_SEQUENCE, COMM_RATE,
CPU_RATIO, IO_RATIO, PUSHDOWN,
DB2_MAXIMAL_PUSHDOWN,
VARCHAR_NO_TRAILING_BLANKS server
options

N/A Yes Yes

Function mapping N/A Yes Yes

Data type mapping, NUMERIC_STRING,
VARCHAR_NO_TRAILING_BLANKS

N/A Yes Yes

Application-related considerations

Table/nickname design

� Data type mapping, informational constraints,
cache tables, MQTs

Yes Yes Yes

Key performance drivers DB2
non-DPF

DB2 II
(local data)

DB2 II
(no local data)

56 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

In this section, we discuss key performance drivers in a dedicated federated
server environment, discuss their pros and cons, provide best practices
recommendations, and identify the facilities for monitoring them.

This section is organized as follows:

� Performance factors
� Federated server considerations
� Data source considerations
� Writing efficient federated SQL queries
� Hardware and network

3.4.1 Performance factors
Some portions of a federated query execute at the federated server, while other
portions execute at one or more remote data sources. The federated query may
also access local data residing on the federated server. Therefore, tuning a
federated query involves tuning the federated server environment (federated
server side), the network, and the remote data source(s) environment (data
source side).

Figure 3-4 on page 58 provides an overview of the tuning options available for a
federated query at the federated server and remote data source(s). Each of
these tuning options will be covered in detail in the following sections.

Index (specification) design

� Keep them current and synchronized, add
index specifications when it can assist the
optimizer in making superior decisions

Yes Yes Yes

Statistics

� Keep them current and synchronized

Yes Yes Yes

Efficient SQL Yes Yes Yes

Key performance drivers DB2
non-DPF

DB2 II
(local data)

DB2 II
(no local data)

Attention: While important, we will not cover the network tuning aspects here.

 Chapter 3. Key performance drivers of DB2 II V8.2 57

Figure 3-4 Performance considerations overview

Factors that influence federated query performance include:

1. Quality of the generated query execution plans at the federated server. The
query execution plan influences the number of interactions required between
the federated server and the remote sources, and the amount of data that is
moved.

2. The bandwidth latency of the intervening communication network.

3. The processing power of the remote machine(s).

4. Quality of the execution plan(s) at the remote data source(s).

5. How efficiently federated SQL queries are written.

6. The processing power of the local machine.

7. The degree to which the federated server (both the system and database
server) is well tuned.

Steps 1, 6, and 7 relate to federated server side performance. Step 2 relates to
network bandwidth performance, and steps 3 and 4 relate to remote data source
side performance. Step 5 relates to writing efficient federated SQL queries.

Data
Source

Data
Source

......
NETWORK

Data
Source

FEDERATED SERVER side

federated query

Local
dataDB2 II tuning options

DB2 UDB tuning options

Database Partition Feature (DPF)
Database manager configuration parameter

INTRA_PARALLEL, MAX_QUERYDEGREE
Database configuration parameter

DFT_QUERYOPT, DFT_DEGREE, SORTHEAP, buffer pool, RQRIOBLK

Nickname statistics and index information
Wrapper option

DB2_FENCED
Server options

COLLATING_SEQUENCE, COMM_RATE, CPU_RATIO, PUSHDOWN, DB2_MAXIMAL_PUSHDOWN,
IO_RATE, VARCHAR_NO_TRAILING_BLANKS

Nickname related
 Data type mapping, NUMERIC_STRING, VARCHAR_NO_TRAILING_BLANKS

Query fragment
RMTQTXT field in the SHIP operator

Data source optimization and
resource constraints

Varies by type of data source

Network bandwidth considerations

DATA SOURCE side

58 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 3-5 shows the elements of federated query performance, and
organization of topics in this section.

Figure 3-5 Federated query performance elements

The amount of data moved (or traffic) mainly depends on three factors:

� The amount of processing and filtering that can be pushed down (see
“Pushdown” on page 78) to the remote data sources

If there are some filtering predicates in the WHERE clause, and the remote
source is able to apply those predicates, then the federated server pushes
down these predicates to the remote server to reduce the amount of data that
needs to be shipped back.

Important: While any one or more of the seven factors in the list may be the
most significant contributor to a particular federated query’s poor performance,
in general, the number of interactions with remote data sources and the
volume of data (number of rows and width of each row) returned from each
data source play a significant role in a federated query’s performance.

Efficient
SQL queries

Federated
server

considerations

SQL sent to the
remote data

source
Choice
of DPF

Communication
buffers

NOTE: Network bandwidth and the processing
power at the federated server and data source
servers are also important factors in the
performance of a federated query. You should
ensure that the network between the federated
server and the data source has very high bandwidth
and low latency

Federated query performance

Data
source

considerations

Query
optimization

Sort
considerations

Sortheap
&

buffer pool

DB2 server
parallelism

Function
and
Data
type

mapping

Informational
constraints

MQT
lookaside

& cache tables

Nickname
statistics &

index
information

Pushdown

Nickname
column
options

Server
options

 Chapter 3. Key performance drivers of DB2 II V8.2 59

� Data placement among multiple sources

If you join two tables and they are both on the same data source so that the
join can be done at that data source without moving the tables out, then that
usually results in better performance than if the two tables resided at two
different sources.

In a join between tables that are not collocated, data from both tables must be
moved to the federated server, which will then do the join.

� Efficiency of the join performed by DB2 II between data sources

Accurate statistics and index information for nicknames are the most
important for helping the optimizer pick the most efficient join strategy.

DB2 Information Integrator has some efficient techniques for performing
federated joins, as follows:

� Use of hash joins and merge scans to obtain a join result from two data
sources

� Nested loop join in which the results of SQL sent to one data source are
supplied as values for host variables sent in SQL to the second data source

3.4.2 Federated server considerations
Performance at the federated server is impacted by the following:

� Presence of local DB2 data that must be tuned as in any other DB2 database
environment.

� Processing that was not or could not be pushed down to the remote data
sources. This includes:

– Sorts for joins, aggregations, and ordered sequence of results
– Applying predicates
– Compensation

IBM invests heavily in query optimization research and development. The DB2 II
optimizer takes into account DB2 and DB2 II configuration options, standard

Note: The federated server never moves data between remote data
sources—only between each remote data source and itself.

Important: Performance at the federated server can be improved through the
choice of DPF as a federated server platform; better optimized queries that
exploit pushdown, parallelism, and superior join strategies; and a well-tuned
sort environment.

60 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

statistics from source data (such as cardinality or indexes), data server capability
(such as join features or built-in functions), data server capacity, I/O capacity, and
network speed. The following capabilities of the DB2 optimizer have a significant
impact on the quality of the access plan generated:

� Query rewrite logic rewrites queries for more efficient processing. For
example, it can convert a join of unions that drives a tremendous amount of
data traffic, into a union of joins that leverages query power at the data server,
and thereby minimizes data traffic back to the federated server. The database
administrator (DBA) can define materialized query tables (MQTs), which the
DB2 optimizer can transparently leverage via query rewrite to satisfy user
queries.

� Pushdown analysis (PDA) capability identifies which operations can be
executed at the data server prior to returning results to the federated server.

A number of DB2 and DB2 II configuration options are available to the DBA to
impact the performance of a federated query on the federated server side. We
will describe the impact of each of these options in turn, describe their pros and
cons, provide best practices recommendations, and identify monitoring elements
relevant to these options.

These options are organized, as follows, and as shown in Figure 3-6:

� Choice of Database Partition Feature (DPF)
� Federated query optimization
� Sort performance considerations
� Communication buffers RQRIOBLK

Figure 3-6 Federated serer considerations topics

Federated
server

considerations

Choice
of DPF

Communication
buffers

Query
optimization

Sort
considerations

 Chapter 3. Key performance drivers of DB2 II V8.2 61

Choice of DPF
DB2 II may be installed in either a DPF or non-DPF environment. Typically a DB2
II DPF environment is deployed when federated queries need local access to
local partitioned DB2 data as well as other remote data sources.

In a partitioned database environment, DB2 II supports exploitation of
inter-partition parallelism for queries that reference local and remote data, or
purely remote data via Computation Partition Groups (CPGs).

DPF with a computational partition node group defined may help performance of
a standalone federated server if there are large intermediate result sets or
significant SQL operations not pushed down. DPF gives the optimizer the option
of distributing intermediate results to the nodes of a partitioned II instance to take
advantage of parallel CPU and sortheap/bufferpool of multiple nodes.

To enable inter-partition parallelism for nickname data, the:

� DB2 II wrapper option DB2_FENCED must be set to “Y” (default is “N”).
� Computation process group (CPG) must be defined.
� There must be multiple nodes defined for the DB2 II instance.

DB2 II wrapper DB2_FENCED option
This option specifies whether the wrapper runs in trusted mode
(DB2_FENCED=”N” (which is the default) or fenced mode (DB2_FENCED=”Y”).
Setting the fenced mode enables nickname data to be distributed to partitions for
parallel processing with local partitioned data instead of joins occurring serially at
the coordinator partition. Example B-11 on page 534 shows the exploitation of
inter-partition parallelism for nickname data with fenced mode enabled.

The DB2_FENCED option may be changed from trusted to fenced and vice
versa. To change the DB2_FENCED option to ’Y’ for the wrapper named “drda”,
issue the following statement:

ALTER WRAPPER drda OPTIONS (SET DB2_FENCED ’Y’);

Performance considerations
Figure 3-7 on page 63 shows the wrapper architecture with the trusted and
fenced mode.

Attention: Do not consider partitioning a federated server database that
contains no local partitioned data, or that contains local data that under normal
circumstances would not be partitioned.

62 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 3-7 Wrapper architecture - Fenced and trusted

In trusted mode, all wrappers run in the same process as the DB2 engine. DB2 II
loads the wrapper module into the db2agent process that was created when the
user connected to DB2 II. The wrapper loads the data source client modules into
the db2agent process in order to make the connection to the data source. While
this is very efficient, unstable wrappers can bring down DB2. Another
consideration is that this architecture does not allow resource sharing across
applications and exploitation of parallelism, thereby increasing resource
utilization and impacting scalability.

In fenced, each wrapper runs in isolated mode in a separate process. DB2 II
creates another process, called a fenced mode procedure (fmp) process, and
loads the wrapper module into this process. The wrapper loads the data source
client modules into this fmp process so that the connection can be made to the
data source. This isolation provides protection for the DB2 engine from errant
wrappers, and enables resource sharing across applications and exploitation of
parallelism. This in turn improves scalability via threading, as well as eases
problem determination because of the ability to monitor individual processes.
However, there is a cost associated with fenced wrappers because the
communication between the engine and the fmp must take place via IPC
resources.

Best practices
We recommend the following:

� Use trusted mode for a wrapper:

– When DB2 II is installed in a non-DPF environment.

Note: When a federated query accesses nicknames associated with different
wrapper DB2_FENCED settings, the optimizer will consider inter-partition
parallelism for nicknames associated with fenced mode, and serial processing
for nicknames with trusted mode.

DB2_FENCED = “N” (trusted) DB2_FENCED = “Y” (fenced)

Oracle

DB2
engine

Oracle
Wrapper

Oracle

DB2
engine

db2fmp

Oracle
wrapper

 Chapter 3. Key performance drivers of DB2 II V8.2 63

– In DPF environments when nicknames are joined with low volumes of local
DPF data. The DB2 optimizer is unlikely to choose inter-partition
parallelism for nickname data in such cases. When nickname data
distribution to the nodes does not occur, there is an avoidable overhead by
eliminating the added cost of communication between the engine and the
wrapper with trusted mode.

� Use fenced mode for a wrapper:

– To enable parallelism in DPF environments.

– To save memory in a high-concurrency environment.

– To provide safety and fault isolation.

– When large local partitioned tables are joined with nicknames.

– In DPF environments for federated queries that only access and join large
volumes of data from different data sources. This is to exploit the
Computation Partition Group capability described in “Computation
Partition Group (CPG)” on page 64.

To determine the setting of the DB2_FENCED wrapper option, issue the
following SQL statement:

SELECT WRAPNAME, OPTION, SETTING FROM SYSIBM.SYSWRAPOPTIONS
WHERE WRAPNAME LIKE ‘%DRDA%’

Computation Partition Group (CPG)
A CPG defines a set of partitions for the optimizer to use for performing a
dynamic redistribution operation for join operations. A CPG is a database
partition group (other than IBMCATGROUP) that is specified in the system
catalog SYSCAT.DBPARTITIONGROUPS.

Defining a CPG enables the optimizer to use an access plan that distributes
nickname data to the partitions of the CPG. Defining a CPG enables
inter-partition query parallelism for queries or parts of queries that reference only
nicknames.

In a query plan that involves a CPG, the federated server redistributes nickname
data across the partitions to create a parallel join. This type of plan can make
queries run faster if the amount of nickname data that participates in the join is
large.

The DB2_COMPPARTITIONGROUP registry variable specifies the CPG and can
be set as follows:

db2set DB2_COMPPARTITIONGROUP=<partitiongroupname>

64 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Where <partitiongroupname> is the name of the partition group that you want to
define as the CPG.

Example 3-2 and Example 3-3 on page 66 show the access plan graph portion of
db2exfmt output for a query with and without nickname exploitation of
inter-partition parallelism as a result of CPG.

� The query shown in Example 3-1 is a join of two nicknames on a federated
server installed in a DPF environment.

� Example 3-2 has the DB2_FENCED wrapper option set to ‘N’ (default), which
is trusted mode. This access plan has one subsection (coordinator
subsection) since all operations are serialized at the db2agent in a trusted
mode environment.

� Example 3-3 on page 66 has the DB2_FENCED wrapper option set to ‘Y’,
which is fenced mode.

This plan has four subsections, as follows:

– Subsection #1 reads the remote data coming from the SHIP operator 7
and redistributes the data (hashing) to the computational partition group
through DTQ operator 6. This subsection is executed on the coordinator
partition.

– Subsection #2 is similar to subsection #1 in that it reads the remote data
coming from the SHIP operator 13 and redistributes the data to the
computational partition group through DTQ operator 12 data (that is, hash
partition the data to a particular partition based on the value of the join
column). This subsection is executed on the coordinator partition.

– Subsection #3 reads the data coming from DTQ operators 6 and 12 and
performs the merge scan join (MSJOIN operator 3). The subsection is
executed on each node of the computational partition group.

– Coordinator subsection coordinates the other subsections. It distributes
the subsections and then uses a table queue DTQ operator 2 to gather the
results from the partitions in the computational partition group to be
returned to the application.

Example 3-1 User query involving join of two nicknames

SELECT L_SHIPINSTRUCT FROM ORATPCD.LINEITEM l JOIN DB2TPCD.ORDERS x ON
L_ORDERKEY = O_ORDERKEY WHERE L_SHIPDATE BETWEEN DATE('1996-01-01') AND
DATE('1996-04-10')

Example 3-2 db2exfmt output showing no CPG exploitation

Access Plan:

 Chapter 3. Key performance drivers of DB2 II V8.2 65

Query Degree:0

 RETURN
 (1)
 Cost
 I/O
 |
 4629.63
 MSJOIN
 (2)
 23201.8
 48
 /---+---\
 1111.11 4.16667
 TBSCAN FILTER
 (3) (7)
 1595.51 19795.6
 48 0
 | |
 1111.11 100000
 SORT TBSCAN
 (4) (8)
 1584.34 19795.6
 48 0
 | |
 1111.11 100000
 SHIP SORT
 (5) (9)
 1504.87 18795.6
 48 0
 | |
 10000 100000
 NICKNM: ORATPCD SHIP
 LINEITEM (10)
 6885.6
 0
 |
 100000
 NICKNM: DB2TPCD
 ORDERS

Example 3-3 db2exfmt output showing CPG exploitation

Access Plan:

Total Cost: 17785.5
Query Degree:1

 Rows

66 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 RETURN
 (1)
 Cost
 I/O
 |
 4629.63
 DTQ
 (2)
 17785.5
 48
 |
 2314.81
 MSJOIN
 (3)
 17676.9
 48
 /---+---\
 555.555 4.16667
 TBSCAN FILTER
 (4) (9)
 1576.65 15194.9
 48 0
 | |
 555.555 50000
 SORT TBSCAN
 (5) (10)
 1571.03 15194.9
 48 0
 | |
 555.555 50000
 DTQ SORT
 (6) (11)
 1534.35 14694.9
 48 0
 | |
 1111.11 50000
 SHIP DTQ
 (7) (12)
 1504.87 9019.62
 48 0
 | |
 10000 100000
 NICKNM: ORATPCD SHIP
 LINEITEM (13)
 6885.6
 0
 |
 100000
 NICKNM: DB2TPCD

 Chapter 3. Key performance drivers of DB2 II V8.2 67

 ORDERS

Query optimization
As mentioned earlier, the selection of an optimal access plan through global
optimization is critical to the performance of a federated query. The DB2 II
optimizer takes into account DB2 and DB2 II configuration options, standard
statistics from source data (such as cardinality or indexes), data server capability
(such as join features or built-in functions), data server capacity, I/O capacity, and
network speed.

The following options influence federated query optimization:

� Nickname statistics and index information

� Database manager configuration parameters INTRA_PARALLEL,
MAX_QUERYDEGREE, SHEAPTHRES, SHEAPTHRES_SHR

� Database configuration parameters DFT_QUERYOPT, DFT_DEGREE,
SORTHEAP, RQRIOBLK, buffer pool for temporary table space

� DB2 II wrapper option DB2_FENCED

� DB2 II server options COLLATING_SEQUENCE, COMM_RATE,
CPU_RATIO, PUSHDOWN, DB2_MAXIMAL_PUSHDOWN, IO_RATIO,
VARCHAR_NO_TRAILING_BLANKS

� DB2 II nickname options data type mappings,
VARCHAR_NO_TRAILING_BLANKS, NUMERIC_STRING

We will review the influence of each of these options on federated query
optimization according to the categories shown in Figure 3-8.

Figure 3-8 Query optimization topics

Function
and

Data type
mapping

Sortheap
&

buffer pool

Nickname
statistics &

index
information

Pushdown
DB2 server
parallelism

Informational
constraints

MQT
lookaside
& cache
tables

Server
options

Nickname
column
options

68 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Nickname statistics and index information
For the DB2 optimizer to make superior access path decisions, it needs
knowledge about available remote indexes on it, and accurate statistics about
remote objects. The federated server relies on the remote source for its index
and statistics information about each remote object. This information is retrieved
when a nickname is created and stored in the federated server’s global catalog.

If you believe that the federated server’s information is out of sync with that of the
remote data source, use the DB2 II provided stored procedure NNSTAT or the
Statistics Update facility for synchronizing the remote objects’ statistics with the
statistics in the global catalog, as shown in Example 3-4. The Statistics Update
facility can be invoked from the DB2 Control Center at regular intervals using the
scheduler.

Example 3-4 NNSTAT stored procedure

CALL SYSPROC.NNSTAT(’NULL’,
’ADMIN’,’STAFF’,’/home/iiuser/reportlogs/log1.txt’,?,?)

Example 3-4 retrieves currently available statistics on the STAFF nickname with
a schema name of ADMIN, with the log records written to log1.txt.

The stored procedure NNSTAT or the Statistics Update facility performs the
following steps for relational sources:

1. Create a “dummy” nickname on the remote data source.

– If statistics were retrieved by the wrapper with this “dummy” nickname
creation, update the global catalog with these collected statistics; if
available, these statistics include CARD, FPAGES, OVERFLOW,
COLCARD, HIGH2KEY, LOW2KEY, NLEAF, NLEVELS,
CLUSTERFACTOR, CLUSTERRATIO, FULLKEYCARD,
FIRSTKEYCARD.

• If the local column name or type is different from the remote column
name or type, then the update utility will not retrieve column statistics.

Attention: The information in the global catalog is not automatically
maintained if statistics on the remote object are refreshed or indexes are
added or dropped.

It is the federated DBA’s responsibility to ensure that the statistics and
metadata information in the global catalog is kept in sync with the
corresponding statistics and index information of the remote data objects.

 Chapter 3. Key performance drivers of DB2 II V8.2 69

• If the local index name and definition is different from the remote index
name or definition, the nickname statistics update facility will not
retrieve index statistics.

– If statistics were not retrieved by the wrapper with this “dummy” nickname
creation, then the NNSTAT stored procedure or the Statistics Update
facility will execute minimum SQL to compute statistics (using logic similar
to get_stats functionality) such as COUNT(*),
COUNT(DISTINCT(colname)), MAX(colname), MIN(colname); this can be
resource intensive.

Base statistics such as CARD, COLCARD, HIGH2KEY, LOW2KEY,
FULLKEYCARD, and FIRSTKEYCARD are also collected.

2. Drop the “dummy” nickname after the global catalog has been updated.

While the NNSTAT stored procedure or the Statistics Update facility
synchronizes the statistics of indexes that have the same column definitions at
the remote data source and in the global catalog, it does not identify mismatches
in remote and local index definitions. For example, assume that:

� The remote data source has indexes RIX1 (col1), RIX2 (col2) and RIX3 (col3)
on table T1.

� Local indexes are NIX1 (col4), NIX2 (col2) and index specification NIX3 (col3)
on the corresponding nickname NT1.

When the stored procedure is run, the statistics of NIX2 and NIX3 are
synchronized. However, the NNSTAT stored procedure or the Statistics Update
facility does not provide warnings or messages that:

� NIX1 index statistics are not updated and therefore may not be consistent
with the other statistics.

� RIX1 has no corresponding index at the local server.

It is therefore up to the DBA to manually identify such mismatches and
synchronize the index information and statistics as appropriate. This is discussed
in “Indexes” on page 70 and “Statistics” on page 72.

� Indexes

When you create a nickname, DB2 II retrieves information about the indexes
defined on the table at the remote source. This information is stored in the
federated server’s global catalog as an attribute of the nickname, and is used
during query optimization.

Index information for a nickname will not be retrieved if:

– The nickname for a table has no indexes.

70 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

– The nickname is for a remote view, Informix synonym, table structured file,
Excel spreadsheet, or XML tagged file.

Views and Informix synonyms do not have index information in the data
source catalog, but the tables referred to by the view or synonym may
have indexes.

– The remote index has a column with more than 255 bytes, or a total index
key length with more than 1024 bytes.

– The remote index is on LOB columns.

Another possible case in which index information for a nickname will be
missing from the catalog is when you create a new index on a remote object
after creating the nickname for the object. DB2 II is not notified of the change,
and has no way of knowing that it needs to update its index information in the
global catalog to include the new index.

To notify DB2 II of the existence of a missing index for a nickname, you can
create an index specification to record information that includes the columns
that comprise the index. However, this index specification will not include any
statistical information by default. To gather statistical information on index
specifications, you must ensure that both the index name and column names
included in the index specification exactly match that of the remote index.
Invocation of the Statistics Update facility or the NNSTAT stored procedure
will then update the statistics of the index specification by reading information
from the remote catalogs.

Similarly, when a nickname is created for a remote view, the federated server
is unaware of the underlying tables (and their indexes) from which the view
was generated. An index specification can be used to tell the DB2 optimizer
about indexes on the underlying tables of a remote view, which may help it
choose better access paths for queries involving the nickname to the remote
view.

In either case, you supply the necessary index information to the global
catalog using the CREATE INDEX... SPECIFICATION ONLY statement. No
physical index is built on behalf of this nickname—only an entry is added to
the system catalog to indicate to the query optimizer that such a remote index
exists and whether it is a unique index. This helps the query optimizer in
generating remote plans for relational nicknames. If you create a nickname for
a view, and the view references a table that has a primary key, you can use
'CREATE UNIQUE INDEX…SPECIFICATION ONLY' to put an entry into the
global catalog about this primary key. In the global catalog, the UNIQUERULE
value for this entry will be 'U' rather than 'P', but 'U' is adequate to indicate to
the DB2 II query optimizer the impact of the primary key for query
optimization.

 Chapter 3. Key performance drivers of DB2 II V8.2 71

An index specification that defines a unique index also conveys the
information about the uniqueness of the index columns to the federated
system. Just like a regular unique index definition registered during relational
nickname registration, such uniqueness information can help the query
optimizer to generate a more optimal plan with strategies such as eliminating
unnecessary DISTINCT operations.

� Statistics

DB2 stores statistical information on objects stored in the database including
tables, table columns, and indexes. These statistics help the DB2 optimizer
work out the best access plan for queries. In order to help the DB2 optimizer
do its job, it is necessary to keep the statistics for each object in the database
up to date. DB2 stores statistical information for nicknames as well. As
nicknames are really just local references for remote tables, they look much
like local tables to the DB2 optimizer. In fact, statistics for both local tables and
nicknames are stored in the same way, and are accessible and updateable
through DB2 system catalog views in the schema SYSSTAT.

DB2 stores the following types of nickname statistics:

– Table cardinality and page counts (SYSSTAT.TABLES) including CARD,
FPAGES, NPAGES, and OVERFLOW

– Column cardinality (COLCARD) and column second lowest (LOW2KEY)
and second highest (HIGH2KEY) values in SYSSTAT.COLUMNS

– Information on remote indexes for nicknames (SYSSTAT.INDEXES)
including NLEAF, NLEVELS, CLUSTERFACTOR, CLUSTERRATIO,
FULLKEYCARD, and FIRSTKEYCARD

The amount of statistical information stored for nicknames varies depending
on the type of remote data source involved, as shown in Figure 3-9; for
example, while table cardinality is available for nicknames on most sources,
column second lowest and second highest values are only available for some
sources.

Figure 3-9 Nickname statistics collected by data source

Statistic: MSSQL
Informix
(IDS) Oracle (Net8)

Sybase
CTLIB DRDA/UDB Teradata DRDA/MVS DRDA/AS400

card X X X X X X
npages X X X X X X
fpages X X X X X
overflow X X
colcard X X X X
high2key X X
low2key X X
firstkeycard X X X X
fullkeycard X X X X
nlevels X X X X
nleaf X X X X X
clusterratio X X X X

72 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

As mentioned earlier, nickname statistics and index information are retrieved
from available information on the remote data source at the time that the
nickname is created. Therefore, nickname statistics can only be as good as
available remote statistics at nickname creation time. In particular, if no
statistics have been collected on a remote object before a nickname is
created, the nickname itself will not have any statistics. Similarly, if statistics
are updated for an object on a remote data source, the new information is not
automatically propagated to the corresponding DB2 nickname. Again, as
discussed earlier, the same principle applies to indexes—DB2 is only aware
of remote indexes for an object that is in existence at the time of nickname
creation.

To make sure that DB2 nicknames have the best possible statistics and index
data:

– Update statistics for objects on remote sources and create remote indexes
before defining DB2 nicknames to them, so that DB2 can retrieve and
store the current statistics information for the nickname.

– If updated statistics are collected for a remote object, or a new remote
index is created, the DB2 statistics and index information for the
corresponding nickname will be out of date. There is no runstats for
nicknames. Use the NNSTAT stored procedure or the Statistics Update
facility for updating statistics and manual procedures to synchronize index
information.

Best practices
We recommend the following best practices for synchronizing the global catalog
information with the corresponding remote object information:

1. When given a choice between creating a nickname for a table or for a view,
always create the nickname for a table so that index information and statistics
are automatically gathered when the nickname is created and when statistics
are updated using the Statistics Update facility or the NNSTAT stored
procedure. If you create a nickname for a view, you will have to obtain the
statistics and index information for the tables in the view from the data source
and update the nickname statistics and index information by command after
the nickname is created.'

If you must create nicknames for views (not tables), obtain the statistics and
index information for the tables referenced by the views.

Use CREATE INDEX…SPECIFICATION ONLY' and the SYSSTAT views to
provide index information and statistics for the nicknames. An approach is to
put your create nickname statements into scripts and follow each create
nickname statement with the statements to create the index specifications
and update the statistics.

2. Keep statistics up to date at data sources.

 Chapter 3. Key performance drivers of DB2 II V8.2 73

3. Run the Statistics Update facility or the NNSTAT stored procedure after
statistics are updated at the data sources.

4. Ensure that the global catalog index and information for a nickname is always
in sync with its referenced remote object. This requires judicious monitoring of
changes occurring at the remote objects and then developing a schedule for
synchronizing the two information sources. Use a combination of the NNSTAT
stored procedure or the Statistics Update facility and the scheduler in the DB2
Control Center, and manual procedures to reestablish synchronization.

5. Consider adding index specifications for a nickname (for example, to indicate
a specific sort order) even though they have no correspondence at the remote
object, in order to provide the optimizer with additional information for
generating a superior access plan.

The order of importance of index information and statistics for helping the
optimizer pick good access plans is:

1. Index information—in particular which columns are indexed and whether the
index is unique or there is a primary key. Use CREATE UNIQUE INDEX to put
an entry into the global catalog about primary keys and unique indexes.

2. Cardinality of the view. CARD value for the nickname in SYSSTAT.TABLES.

3. Column distribution statistics for the nickname columns that will be used for
joins, in filters, and in column functions.

– Number of unique values—COLCARD in SYSSTAT.COLUMNS.

– Maximum and minimum values—HIGH2KEY and LOW2KEY in
SYSSTAT.COLUMNS. FULLKEYCARD and FIRSTKEYCARD in
SYSSTAT.INDEXES are also important.

DB2 server parallelism
The influence of inter-partition parallelism and the DB2_FENCED wrapper option
was covered in “Choice of DPF” on page 62, and the focus of this section is
intra-partition parallelism.

The INTRA_PARALLEL, MAX_QUERYDEGREE, and DFT_DEGREE
parameters determine whether intra-partition parallelism should be enabled, and
the degree of parallelism desired. In a non-DPF environment, federated queries
that involve local data can benefit from intra-partition parallelism. With federated

Attention: Defining index specifications that violate the semantics of the
remote object, such as defining a unique index on a column that contains
duplicates, can return incorrect results. Extreme caution should be
exercised when creating such index specifications.

74 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

queries, the part of a query that involves local data can run in parallel, while the
part that involves nicknames runs serially.

� The database manager configuration parameter INTRA_PARALLEL must be
set to YES (default is NO) for the optimizer to consider intra-partition
parallelism for federated queries.

� The database manager configuration parameter MAX_QUERYDEGREE sets
an upper limit for the degree of parallelism for any query in the database. This
value overrides the CURRENT DEGREE special register and the DEGREE
bind option.

� The database configuration parameter DFT_DEGREE sets the default value
for the CURRENT DEGREE special register and the DEGREE bind option.

Besides enabling INTRA_PARALLEL, set the DFT_DEGREE database
configuration parameter to -1 or ANY, which sets the default value for the
CURRENT DEGREE special register and the DEGREE bind option. If a query is
compiled with DEGREE = ANY, the database manager chooses the degree of
intra-partition parallelism based on a number of factors, including the number of
processors and the characteristics of the query. The actual degree of parallelism
used at run time may be lower than the number of processors, depending on
these factors and the amount of activity on the system. Parallelism may be
lowered before query execution if the system is heavily utilized in order to
minimize adverse performance impact on other database users.

Another database configuration parameter that has an impact on query
performance is MAX_QUERYDEGREE, which specifies the maximum degree of
intra-partition parallelism that may be used for any SQL statement executing at
the database manager level. This parameter should be set to the number of
CPUs in the system to avoid the possibility of users inadvertently or intentionally
setting their CURRENT DEGREE register value or DEGREE bind option too
high.

The degree of parallelism chosen by the optimizer is displayed in EXPLAIN
output, as shown by the Query Degree field in Example B-9 on page 490. The
Parallelism field in the Database Context section in the db2exfmt output indicates
whether intra-partition parallelism is enabled.

Performance considerations
While intra-partition parallelism can considerably improve response times of
queries, it consumes additional CPU, I/O, real memory, and virtual memory (such
as buffer pools, sort heaps, and other database heaps) resources and can
exacerbate performance in a resource-constrained environment. Therefore,
intra-partition should not be enabled in resource-constrained environments.

 Chapter 3. Key performance drivers of DB2 II V8.2 75

Best practices
We recommend the following best practices for tuning INTRA_PARALLEL,
DFT_DEGREE and MAX_QUERYDEGREE: For SMP environments involving
access to large volumes of local data, set INTRA_PARALLEL to YES,
DFT_DEGREE to -1, and MAX_QUERYDEGREE to the number of CPUs, since
parallelism could significantly enhance performance.

Performance monitoring metrics
To determine the degree of parallelism actually used at run time requires the use
of the database system monitor.

Example 3-5 shows sort-relevant snapshot information from the get snapshot
for all applications command with the DFT_MON_STMT switch set to ON.

Example 3-5 Database snapshot showing intra_parallelism monitor element

db2 => get snapshot for all applications

 Application Snapshot

..........lines have been removed.....
Degree of parallelism requested = 1
Number of agents working on statement = 1
Number of subagents created for statement = 1
..........lines have been removed.....

The following fields are of interest for tuning the INTRA_PARALLEL,
MAX_QUERYDEGREE, and DFT_DEGREE parameters:

� Number of Agents Working on a Statement is a gauge that describes the
number of concurrent agents currently executing a statement or subsection. It
is an indicator of how well the query is parallelized. This is useful for tracking
the progress of query execution, by taking successive snapshots.

� Number of Agents Created is a high water mark that at the application level
represents the maximum number of agents that were used when executing
the statement. At the database level, it is the maximum number of agents for

Important: All the fields in the snapshot monitor (whether they are water
marks, counters, or gauges) should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

76 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

all applications. It is an indicator of how well intra-query parallelism was
realized.

� Degree of Parallelism is an information element that specifies the degree of
parallelism requested when the query was bound. It is used with Number of
Agents Created to determine if the query achieved the maximum level of
parallelism.

Function and data type mapping
When nicknames reference non-DB2 relational sources such as Oracle or SQL
Server, function and data type mapping may need to occur on the federated
server for certain functions and columns of the remote object. DB2 II provides
default mapping for most functions and data types, for example, the Oracle
remote data type NUMBER is mapped to DOUBLE in DB2 II by default.

The default function and data type mappings are documented in the IBM DB2
Information Integrator Federated Systems Guide Version 8.2, SC18-7364-01.

The default type mappings are contained in the wrappers. The default type
mappings can be over-ridden or extended by using the CREATE TYPE
MAPPING statement, which puts entries into catalog view
SYSCAT.TYPEMAPPINGS. The CREATE TYPE MAPPING statement does not
change the type mapping of columns of nicknames created before the CREATE
TYPE MAPPING command was issued. Only nicknames created after the
execution of the CREATE TYPE MAPPING statement are affected. To change
the type mapping of an existing nickname column, use the following statement:

ALTER NICKNAME…ALTER COLUMN <colname> LOCAL TYPE <new type>

Performance considerations
When a federated query joins nickname columns related to different data
sources, there is a likelihood that there will be a data type mismatch between the
joined columns. In such cases the optimizer is unable to use the hash join as a
join method, and performance may be impacted.

There are a couple of workarounds to use if the join columns at the different data
sources cannot have the identical type, precision/length, and scale, as follows:

� Add an additional column to the table at one of the data sources, with the new
column having the same type, precision/length, and scale as the join column
at the other data source. Update this new column with values coming from the
prior join column in the same table. Then create a unique index that includes
the new column and update the statistics for the table. Then drop and
re-create the nickname in DB2 II. Use the new nickname column in the join.

� Create a view over the table at one of the data sources. Cast the join column
in the view to the same type, precision/length, and scale as the join column at

 Chapter 3. Key performance drivers of DB2 II V8.2 77

the other data source. Create a DB2 II nickname over the view. Keep the old
nickname that was for the table referenced in the view; in fact, it is
recommended that you drop and re-create that nickname or use the NNSTAT
stored procedure or Statistics Update facility to update the statistics of the
nickname. Then obtain the index information and statistics for the nickname
over the table and use this information to update the statistics of the nickname
for the view and to make CREATE INDEX...SPECIFICATION ONLY definitions
for the nickname that is over the view. Use the nickname that is over the view
in your join.

Best practices
We recommend that the default data type mappings of nickname columns that
participate in joins with other data sources be reviewed for accuracy to ensure
that the DB2 optimizer is not inhibited from choosing the most optimal access
path available.

Pushdown
Pushdown is an important aspect of federated query processing. The “pushdown
analysis (PDA) component of the SQL Compiler decides which parts of a query
can be pushed down and processed remotely at the data sources.

The decision to push down certain parts and operators of a query depends on
several factors, as follows:

� The availability of required functionality at the remote source

If the remote source is simply a file system with a flat file, then it is probably
not possible to push down any filtering predicates.

� The options specified in the server definition of a remote source, as discussed
in the DB2 server options and nickname column options bulleted list below

For instance, if the collating sequence at the federated server is different from
the one at the remote server, then order dependent operations on string data
and some predicates involved in the query have to occur at the federated
server, and cannot be pushed down.

For further details, refer to Using the federated database technology of IBM DB2
Information Integrator, white paper by Anjali Grover, Eileen Lin, and Ioana Ursu,
available from the Web site:

http://www-3.ibm.com/software/data/pubs/papers/#iipapers

As mentioned earlier, pushdown is influenced by the DB2 II server options and
nickname column options, as follows:

� DB2 II server options

78 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

http://www-3.ibm.com/software/data/pubs/papers/#iipapers

Server options may be set to persist over successive connections to the data
source, and these values are stored in the global catalog. However, it is also
possible to temporarily set a server option for the duration of a single
connection to the database via the SET SERVER OPTION statement. This
temporary setting is not stored in the global catalog. The advantage of this
temporary setting is that it offers granular tuning control over a server option
at a query level.

This section discusses the most common federated server options that can
significantly impact the decisions made by the DB2 optimizer, and thereby on
query performance:

– COMM_RATE, CPU_RATIO, IO_RATIO

These attributes describe the communication links to the remote source,
and the relative speed of the remote system's CPU and I/O. By default, the
federated server assumes that the remote machine is equal in power to
the local machine, and that there is a 2 MB/sec link to it. Setting these
options to indicate a more powerful remote machine or a faster link will
tend to encourage query pushdown. These knobs are not perfect, but they
are a way to indicate to the DB2 optimizer that a remote machine is fast or
slow.

– COLLATING_SEQUENCE

Setting this attribute to ‘Y’ tells PDA that the remote source sorts
characters the same way that DB2 does. This means that the federated
server can consider pushing down operations involving sorting, grouping,
or inequality comparisons on CHAR and VARCHAR columns. For
instance, setting COLLATING_SEQUENCE to ‘Y’ allows the DB2
optimizer to push down ORDER BY clauses that reference character and
VARCHAR columns.

Pushdown of sorting, grouping, or inequality comparison operations on
numeric, date, time, and date/time columns is not affected by this server
option.

On a Microsoft SQL Server database server that is running Windows NT®
or Windows 2000, the default collating sequence is case insensitive (for
example, ’STEWART’ and ’StewART’ are considered equal). To guarantee
correct results from the federated server, set the
COLLATING_SEQUENCE server option to ’I’. This setting indicates that
the Microsoft SQL Server data source is case insensitive. The federated

Tip: We recommend that you modify these parameters to accurately
reflect the relative speeds, but use extreme caution or avoid modifying
them altogether in order to influence the access plan.

 Chapter 3. Key performance drivers of DB2 II V8.2 79

server does not push down queries if the results that are returned from the
data sources will be different from the results that are returned when
processing the query at the federated server. When you set the
COLLATING_SEQUENCE server option to ’I’, the federated server does
not push down queries with string data or expressions and that include the
following clauses, predicates, or functions:

• GROUP BY clauses
• DISTINCT clauses
• Basic predicates, such as equal to (=)
• Aggregate functions, such as MIN or MAX Related

– VARCHAR_NO_TRAILING_BLANKS

This attribute is used for databases like Oracle that do not pad VARCHAR
fields with trailing blanks. The SQL Compiler uses this information while
checking any character comparison operations to decide the pushdown
strategy to evaluate the operations.

DB2 uses blank padded comparison semantics while comparing character
strings of unequal lengths. The comparison is made by using a copy of the
shorter string that is padded on the right with blanks so that its length is
equal to that of the longer string. This means that the string “A” is
considered equivalent to “A “ in DB2 UDB.

However, this behavior does not apply to all character data types across all
data sources, such as VARCHAR and VARCHAR2 data types in Oracle.

In general, comparison operations on string columns without blank
padding comparison semantics need to be evaluated locally unless the
query compiler is able to find functions to enforce similar logic remotely.
For example, the query compiler will add Oracle RTRIM function calls to
varchar predicates, which are pushed down if
VARCHAR_NO_TRAILING_BLANKS = 'N'. The RTRIM calls are

Attention: We strongly recommend that this option be exercised with
extreme caution, because you could get incorrect results if the remote
source’s collating sequence in reality did not match DB2’s collating
sequence after you set COLLATING_SEQUENCE to ‘Y’.

Important: This setting can provide significant performance, and we
recommend that the federated server be created in the same codepage
and using the same collating sequence as the most frequently
accessed data source. This will help avoid potentially expensive
character translation and allow pushdown of order-dependent
operations.

80 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

necessary in order to maintain data consistency, but will not allow the
Oracle optimizer to use and index to access those RTRIM'ed varchar
columns. This is likely to impact performance of both the query fragment
pushed down to Oracle and the whole federated query.

If you are sure that your VARCHAR columns do not contain trailing blanks,
then setting this option to ‘Y’ at the server level will allow the query
compiler to push down query fragments without the RTRIM function, since
it would be redundant because the data does not contain any trailing
blanks.

The primary importance of the server/column option
VARCHAR_NO_TRAILING_BLANKS on performance with Oracle data
sources is:

• If VARCHAR_NO_TRAILING_BLANKS = 'N' (default), and an Oracle
VARCHAR2 column is used in a join or filter, DB2 II will send
'RPAD(colname)=' to Oracle to do the comparison or join and Oracle
will not use an index to process the join or filter. Performance is often
slow.

• If VARCHAR_NO_TRAILING_BLANKS='Y', and an Oracle
VARCHAR2 column is used in a join or filter, DB2 II will send
'colname=' to Oracle to do the comparison or join and Oracle will use
an index if it is available to process the join or filter. Performance is
usually faster than if VARCHAR_NO_TRAILING_BLANKS='N'.

– DB2_MAXIMAL_PUSHDOWN

This option specifies the primary criteria that the query optimizer uses
when choosing an access plan. The query optimizer can choose access
plans based on cost or based on the user requirement that as much query
processing as possible be performed by the remote data sources.

Attention: Here again, setting VARCHAR_NO_TRAILING_BLANKS to
‘Y’ when trailing blanks do exist at the remote data source can return
inconsistent results.

Tip: This option can also be set at the nickname column level, which
may be a better use of the option.

If it is set at the server level, the user would then need, for example, to
ensure that all VARCHAR and VARCHAR2 columns of all data objects
out of this Oracle data source are guaranteed not to contain trailing
blanks.

 Chapter 3. Key performance drivers of DB2 II V8.2 81

With DB2_MAXIMAL_PUSHDOWN set to ‘Y’ (default is ‘N’), reducing
network traffic becomes the overriding criteria for the query optimizer. The
query optimizer uses the access plan that performs the fewest number of
SHIP operators in the plan regardless of cost. Setting this server option to
‘Y’ forces the federated server to use an access plan that might not be the
lowest cost plan. Using an access plan other than the lowest cost plan can
decrease performance. If a materialized query table (MQT) on the
federated server can process part or all of the query, then an access plan
that includes the materialized query table might be used. Using a
materialized query table instead of pushing down operations to the data
sources reduces network traffic.

The DB2_MAXIMAL_PUSHDOWN server option does not need to be set
to ‘Y’ for the federated server to push down query processing to the
remote data sources. When this server option is left to default (‘N’), the
query optimizer will push down query processing to the data sources.
However, the primary criteria the optimizer uses when the option is set to
‘N’ is cost instead of network traffic.

There are situations when DB2_MAXIMAL_PUSHDOWN of 'Y' will not
help performance and may even hurt performance. We recommend
adopting a trial and error method to determine whether setting
DB2_MAXIMAL_PUSHDOWN to 'Y' will benefit or exacerbate a particular
query’s performance.

� Nickname column options

The NUMERIC_STRING and VARCHAR_NO_TRAILING_BLANKS and
nickname column options impact the decisions made by the DB2 optimizer,
and thereby query performance.

– NUMERIC_STRING

This nickname column option applies to character data types and is
applicable to those data sources for which the COLLATING_SEQUENCE
server option is set to ‘N’.

Note: When the DB2_MAXIMAL_PUSHDOWN server option is set to
‘Y’, a query that will result in a Cartesian product will not push down the
remote data sources. Queries that will result in a Cartesian product will
be processed by the federated database.

Tip: Consider setting DB2_MAXIMAL_PUSHDOWN to ‘Y’ for poorly
performing queries that have pushdownable predicates that are being
executed at the federated server. Changing the default in this case
should be the exception rather than the norm.

82 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

The federated system does not push down any operations that can
produce different results due to differences in collating sequences
between the federated database and the remote data source. Suppose
that a data source has a collating sequence that differs from the federated
database collating sequence—in this case, the federated server typically
does not push down sorts for any columns containing character data at the
data source. It returns the retrieved data to the federated database, and
performs the sort locally.

However, suppose that the column is a character data type (CHAR or
VARCHAR) and contains only numeric characters (0 through 9)—this fact
can be indicated to the DB2 optimizer by setting the NUMERIC_STRING
column option to ‘Y’. This gives the DB2 query optimizer the option of
performing the sort at the data source because numbers are always
sorted the same regardless of the collating sequence. If the sort is
performed remotely, you can avoid the overhead of porting the data to the
federated server and performing the sort locally.

– VARCHAR_NO_TRAILING_BLANKS

As discussed in “VARCHAR_NO_TRAILING_BLANKS” on page 80, this is
also a server option. However, specifying this option at the column level
provides greater flexibility and granularity if there are multiple tables in a
database that do not all have missing trailing blanks.

Sortheap and buffer pool
The SORTHEAP, SHEAPTHRES and SHEAPTHRES_SHR parameters impact
query optimization and the efficiency of sorts. The size of the SORTHEAP and
buffer pool for the temporary table space can impact the type of join (nested loop,
merge scan or hash join) chosen. These parameters are discussed in more detail
in “Sort considerations” on page 91.

Buffer pools are by far the component that can have the most dramatic impact on
performance, since they have the potential to reduce application synchronous

Attention: Here again, setting NUMERIC_STRING to ‘Y’ should be
used with extreme caution, since it can return inconsistent results when
the column happens to contain non-numeric values at the remote data
source.

Attention: Here again, setting VARCHAR_NO_TRAILING_BLANKS to
‘Y’ should be used with extreme caution, since it can return erroneous
results when trailing blanks happen to exist for this column at the
remote data source.

 Chapter 3. Key performance drivers of DB2 II V8.2 83

I/Os. A buffer pool improves database system performance by allowing data to
be accessed from memory instead of from disk. Because memory access is
much faster than disk access, the less often the database manager needs to
read from or write to a disk, the better the performance. A buffer pool is memory
used to cache both user and system catalog table and index data pages as they
are being read from disk or being modified. Federated queries that access local
data would benefit from well-tuned buffer pools associated with local data.

A buffer pool is also used as overflow for sorts. In general, federated queries that
do not access local data will perform most of their processing in the temporary
table space in the federated server, and tuning the sort overflow buffer pool can
improve federated query performance significantly.

IBMDEFAULTBP is the default buffer pool for the temporary tablespace. Sorts
that overflow SORTHEAP spill to the temporary tablespace, and therefore the
initial spill is into IBMDEFAULTBP. Therefore, it is recommended to increase the
size of buffer pool IBMDEFAULTBP before SORTHEAP, since increasing the
buffer pool will help to contain both sorts and transient temporary tables in
memory. Increasing only SORTHEAP only benefits sorts and not temporary
tables.

We recommend having a separate buffer pool for temporary tablespaces to
improve sort performance, assuming adequate memory is available. Tuning
buffer pools mainly involves improving the hit ratio. A discussion on tuning buffer
pools is beyond the scope of this publication. Refer to the redbook DB2 UDB

Note: DB2 II does not cache data from data sources into memory at the
federated server for use in subsequent federated queries. DB2 II does not
manage the updates to the data actually on the disk at the data source;
therefore, if DB2 II were to keep data from data sources in memory and used
that data in subsequent queries, the results could be wrong because the
results would not reflect updates that were made to the data at the data
source. Though DB2 II does use memory as needed for sorts and temp tables
to process SQL operations not pushed down to data sources, these sorts and
temp tables are transient, meaning that they and the data they held do not
persist in memory or on disk at the federated server once the result of the
query is given to the user. When you see the term caching used in conjunction
with DB2 II, it refers to a different form a caching, which is the explicit creation
and management of tables at the federated server with those tables
containing data from data sources that is refreshed or replicated at
user-specified intervals, as described in “MQT look-aside and cache tables”
on page 85. The user, or the optimizer, can substitute these tables for
nicknames to improve query performance, but the user needs to understand
the latency of the data in these tables.

84 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

ESE V8 non-DPF Performance Guide for High Performance OLTP and BI,
SG24-6432; and the IBM DB2 UDB Administration Guide: Performance Version
8.2, SC09-4821, for a complete discussion of this topic.

MQT look-aside and cache tables
An MQT is a table whose structure and contents are based on an SQL query.
The SQL query used in defining the MQT may access one or more tables or
nicknames.

MQTs were designed to improve the performance of queries in a data
warehousing environment where users often issue queries repetitively against
large volumes of data with minor variations in a query’s predicates. MQTs
provide a look-aside capability for such queries that can result in orders of
magnitude improvement in performance.

Since the MQT often contains precomputed summaries and/or a filtered subset
of the data, it would tend to be much smaller in size than the base tables from
which it was derived. When a user query accessing the base table is
automatically rewritten (as shown in Figure 3-10 on page 86) by the DB2
optimizer to access the MQT instead, then significant performance gains can be
achieved. MQTs do not require an aggregate function in its definition to be
beneficial.

There are internal rules by which query rewrite substitutes MQTs for nicknames;
when MQT substitution is done by query rewrite, the name of the MQT can be
found in the Optimized Statement section in the db2exfmt output for the query. If
query rewrite does not substitute an MQT for a nickname, the optimizer evaluates
plans that use the nickname and plans that use the MQT. If the plan that uses the
MQT is lower cost than the plan that uses the nickname, the optimizer will use
the MQT. In that case, while the Optimized Statement section in the db2exfmt
output still shows the nickname being used, the access plan graph section will
show that it is actually the MQT that the optimizer selected to access.

Note: When the optimizer rewrites a query to reference an MQT, the access
plan graph in the db2exfmt output identifies this action. However, in most
cases, the Optimized Statement in the db2exfmt output shows the MQT only if
it is an aggregate MQT.

 Chapter 3. Key performance drivers of DB2 II V8.2 85

Figure 3-10 MQT/AST look-aside concept

The refresh of an MQT may be immediate or deferred, as shown in Figure 3-10.

� With REFRESH IMMEDIATE MQTs, the contents of the MQT are
automatically kept in sync at all times.

� With REFRESH DEFERRED, it is the DBA’s responsibility to refresh the MQT
at appropriate intervals—resulting in a latency that is dependent upon the
refresh cycle chosen by the DBA.

MQTs that reference nicknames can only be defined as REFRESH DEFERRED.

Important: MQT functionality is somewhat similar to the role of a DB2 index,
which provides an efficient access path that the query user is typically
unaware of. However, unlike an index, a user may directly query the MQT, but
this is not generally recommended since it would detract from the appeal of an
MQT being a black box that an administrator creates and destroys as required
to deliver superior query performance.

DB2 Optimizer

 SQL Queries
Against Base Tables

Base Table
T2

MQT/AST
T1,T2,..Tn

Base Table
Tn

Base Table
T1

Immediate
Refresh

Deferred
Refresh

with
MQT

routing

no
MQT

routing

OR

86 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

In DB2 II Version 8.2, there is a somewhat similar concept called cache tables,
which provide a look-aside capability. A cache table can improve query
performance by accessing a local subset of data instead of accessing data
directly from the remote relational data source.

A cache table can be thought of as an enhanced MQT with the following
properties:

� A nickname on the federated database system with the same column
definitions as the remote relational data source table.

� One or more user-maintained MQTs that you defined on the nickname. The
nickname can contain a subset of high-use data from a remote data source.

� A user-defined replication schedule that is associated with each cache table
to automatically propagate changes from the data source object to the cache
in an asynchronous manner.

There needs to be a row-to-row relationship between the data in the table at the
data source and the MQTs created for the cache table. The cache table can have
multiple MQTs, each with a different filter controlling which records from the
source table are replicated into the MQT.

Figure 3-11 on page 88 illustrates the cache table concept.

Attention: We recommend creating MQTs on nicknames to minimize access
to remote data sources when large volumes of data are involved. However, it
should be noted that only queries that have the CURRENT REFRESH AGE
special register set to ANY (the default is zero, which means that data must be
current) will have their queries considered for query rewrite because of the
REFRESH DEFERRED nature of MQTs defined on nicknames. This means
that the DBA should consider creating such MQTs only when there is a
significant query workload that tolerates latency explicitly by the setting of the
CURRENT REFRESH AGE special register to ANY.

 Chapter 3. Key performance drivers of DB2 II V8.2 87

Figure 3-11 Cache table concept

Cache tables can be configured through the DB2 Control Center via a Cache
Table Wizard. The wizard automatically creates an MQT over the nickname,
configures and starts replication between the source and cache table, performs
the initial refresh of the cache table, and sets the appropriate variables to enable
query routing to cache tables.The cache table has the same name as the
nickname component and contains all the columns of the remote object. A cache
table can only be associated with one remote table. The cache table can be a full
replica or partial subset of rows from your remote data source.

Applications that query a remote data source can query the cache table with no
change to the application. During query processing, the optimizer directs the
query to the cache table if it is able to satisfy the query, or the remote data source
if the cache table cannot satisfy the query.

Cache tables provide the same benefits as look-aside as MQTs. However, they
differ from the MQTs in that they use replication to propagate changes from the
remote table to the cache table. The semantics of routing are slightly different in
that the setting of the CURRENT REFRESH AGE special register is not
considered by the optimizer when considering query rewrite to the cache table.

88 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Instead, the routing to cache tables can be controlled by the setting of the default
maintained table types for optimization (DFT_MTTB_TYPES) database
configuration parameter, or the 'CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION' special register. To enable cache table routing,
'FEDERATED_TOOL' must be listed in one of these parameters.

The following considerations apply to implementing cache tables:

� SQL replication is the mechanism used to maintain the cache table from the
data source. Therefore, all capabilities and limitations of SQL replication apply
to cache table maintenance. This includes the data sources supported, the
requirement to have a primary key or unique index on the source table, and
the mechanisms used for capturing changes at the data source. For example,
an Oracle data source requires a trigger to be defined on the source table in
order to capture changes; this can impact the performance of updates
occurring at the data source.

� The cache table is set up via a wizard from the DB2 Control Center and
includes the creation of the cache table and a primary key index on it, setting
up the replication control tables and subscriptions, as well as the initial load of
the cache table. However, it is up to the database administrator to define
additional indexes on the cache table and collect statistics on the cache table
and indexes via the DB2 runstats utility in order to provide the optimizer with
up-to-date statistics for optimal access path selection.

� The initial refresh of the cache table is performed using SQL inserts only. For
large volumes of data, the initial refresh may therefore be time consuming.

Informational constraints
Informational constraints provide the DB2 optimizer with additional information to
help it determine the optimal access path for a query. Informational constraints
are implemented as check constraints or referential constraints, and are defined
in the CREATE/ALTER TABLE statement with the NOT ENFORCED option.

Note: Cache tables can only be set up via the DB2 Control Center. A cache
table is a DB2 Control Center object and can be viewed as a folder in the
navigation tree.

Attention: A technote is currently being written by DB2 II development that
provides guidelines on the use of the cache table. You are strongly advised to
review it when it becomes available, to ensure that cache tables are are only
used in appropriate scenarios.

 Chapter 3. Key performance drivers of DB2 II V8.2 89

Informational constraints are not enforced by the database manager during
updates to a table; they are used by the DB2 optimizer for potential query rewrite.

Informational constraints can be used to improve the performance of queries with
UNION ALL, as well as joins. It helps the optimizer rewrite outer joins as inner
joins, and provides better estimates of cardinality. The DB2 optimizer can be
directed to ignore an informational constraint by specifying the DISABLE QUERY
OPTIMIZATION option in the CREATE/ALTER TABLE statement.

Informational constraints are now supported for nicknames as well via the and
CREATE/ALTER NICKNAME statement, and can therefore provide performance
benefits by avoiding unnecessary join operations with remote data sources.

Examples of using informational constraints with nicknames include:

� Use with Cube Views

Informational constraints like primary key/foreign key between nicknames will
allow the optimizer to use the MQTs created by Cube Views in queries where
the nicknames are referenced. Without the informational constraints, the
optimizer will use the nicknames even though Cube Views may have created
MQTs for them.

� Check constraints

DB2 II will compare the predicate in a query with the check constraints on
nicknames to determine if the nicknames should be used in the query. If the
check constraint indicates that the nickname cannot contribute to the result,
the nickname is not included in the access plan, thereby possibly improving
performance.

� Primary key/foreign key

For queries that reference two nicknames (or a nickname and a table) with
primary key/foreign key defined, and the query result does not require
columns from one of the nicknames in the query. If the DB2 II optimizer
determines that the RI constraint indicates that the nickname whose columns
are not in the result will not add additional records to the result, then it
excludes that nickname in the access plan, thereby possibly improving
performance.

Important: When using informational constraints, ensure that an appropriate
process is in place to ensure the integrity of the data.

90 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Sort considerations
As mentioned earlier, SORTHEAP, SHEAPTHRES, SHEAPTHRES_SHR, and
buffer pool impact query optimization and the efficiency of sorts. DB2 may
perform sorts to return query results in a desired order (SELECT statement that
uses the ORDER BY clause) when performing joins and during index creation.

Again, as mentioned earlier, federated queries that do not access local data will
most likely perform most of their processing in the temporary table space in the
federated server, and tuning the sort overflow buffer pool can improve federated
query performance significantly. This section provides an overview of sort and
the considerations in tuning sort-related parameters for superior performance.

The performance of sort depends upon many factors, including the writing of
efficient SQL, and the configuring of the following parameters:

� Database manager configuration parameter

– SHEAPTHRES is an instance-wide limit on the total amount of memory
that can be consumed for sorts. It is used differently for private and shared
sorts2, as follows:

• For private sorts, this parameter is an instance-wide soft limit on the
total amount of memory that can be consumed by private sorts at any
given time. When this limit is reached, the memory allocated for
additional incoming private sort requests will be considerably reduced.
These sorts are called post threshold sorts.

• For shared sorts, this parameter is a database-wide hard limit on the
total amount of memory that can be consumed by shared sorts at any
given time. When this limit is reached, no further shared-sort memory
requests are allowed (they will fail with SQL0955C) until the total
shared-sort memory consumption falls below the limit specified by
SHEAPTHRES.

Attention: We urge extreme caution in the use of informational constraints
that do not accurately reflect constraints that are in place on the remote table,
since the user may get inconsistent results when the actual data happens to
violate the integrity constraints asserted by the informational constraints.

2 DB2 performs shared sorts in database shared memory when the INTRA_PARALLEL database
manager configuration parameter is enabled; otherwise it performs private sorts in private agent
memory.

Attention: This limit only applies to shared sorts when the
SHEAPTHRES_SHR database configuration parameter is set to
zero.

 Chapter 3. Key performance drivers of DB2 II V8.2 91

The default value is 20,000 4-K pages for UNIX and 64-bit platforms, and
10,000 4-K pages for Windows.

� Database configuration parameters

– SORTHEAP defines the maximum number of private memory pages to be
used for a private sort, or the maximum number of shared memory pages
to be used for a shared sort. Each sort operation has a separate sort heap
that is allocated as needed by DB2 and freed when the sorting completes.
In the case of a piped sort (see the definition in “Return of results from the
sort phase” on page 93), the sort heap is not freed until the application
closes the cursor associated with the sort. SORTs that are too large for
SORTHEAP overflow to the temporary tablespace, which means they
initially overflow into the buffer pool for the temporary tablespace. If that
buffer pool is large enough and has free pages, the sort may still be
contained in memory even though it overflowed SORTHEAP.

If directed by the DB2 optimizer, a smaller sort heap than the one specified
by SORTHEAP is allocated by DB2.

The default is 256 4-K pages.

This parameter is configurable online.

– SHEAPTHRES_SHR is a database-wide hard limit on the total amount of
database shared memory that can be used for shared sorts. When this
limit is reached, no further shared-sort memory requests are allowed (they
will fail with SQL0955C) until the total shared-sort memory consumption
falls below the limit specified by SHEAPTHRES_SHR.

SHEAPTHRES_SHR is only meaningful when either the
INTRA_PARALLEL database manager configuration parameter or the
connection concentrator (database manager configuration parameters
MAX_CONNECTIONS greater than MAX_COORDAGENTS) is enabled.

DB2 sorts are performed in two phases, as follows:

� Sort phase

When a sort is performed, DB2 allocates a block of memory equivalent to
SORTHEAP in which data is sorted. When the sort cannot be sorted entirely
within the sort heap, it overflows into the buffer pool and temporary table
space, as shown in Figure 3-12 on page 93, and is called an overflowed sort.
When no overflow occurs the entire sort is completed in the sort heap and is
called a non-overflowed sort.

Attention: Sorts that do not overflow perform better than those that do.

92 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 3-12 Overflowed sorts

� Return of results from the sort phase

If sorted information can return directly without requiring a temporary table to
store the final sorted list of data, then it is called a piped sort. If the sorted
information requires a temporary table to be returned, then it is called a
non-piped sort. Figure 3-13 on page 94 shows an example of a
non-overflowed piped sort.

Attention: A piped sort always performs better than a non-piped sort.

 Chapter 3. Key performance drivers of DB2 II V8.2 93

Figure 3-13 Non-overflowed piped sorts

Performance considerations
Avoiding sorts is generally preferred through appropriate indexing of tables and
writing of efficient SQL (Index SARGable predicates).

Note: The DB2 optimizer will attempt to calculate the size of the sort heap that
will be needed based on table statistics. If it requires more space than
configured by SORTHEAP, then the sort will be overflowed; otherwise DB2
will attempt to allocate the entire SORTHEAP for the sort. In addition, the DB2
optimizer will also determine whether a piped or non-piped sort should be
performed.

Note: However, in the case of federated queries with no access to local data, it
is unlikely that indexing or writing of efficient SQL can avoid the occurrence of
sorts.

94 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

If sorts cannot be avoided, then:

� Non-overflowed piped sorts are preferred by configuring an appropriate
SORTHEAP value.

� Post threshold sorts should also be avoided by configuring an appropriate
SHEAPTHRES value, since they result in smaller sort heap allocations and
therefore have the potential for overflowed sorts.

� Avoid a rejection of new shared sorts (SQL0955C messages) due to an
insufficient configuration of SHEAPTHRES_SHR.

With DB2 II, the determination whether to push down sorts for non-character
nickname columns (that is, for DATE, TIME, TIMESTAMP, INTEGER, SMALLINT,
BIGINT, DECIMAL, FLOAT, DOUBLE, REAL) is made by the optimizer based on
cost.

For CHAR and VARCHAR nickname columns, pushdown analysis (PDA) first
determines if the data source has the same collating sequence as the DB2 II
database based on the setting of the COLLATING_SEQUENCE server option
and NUMERIC_STRING column option. The default setting for both the
COLLATING_SEQUENCE server option and the NUMERIC_STRING column
option is 'N', unless the type of the data source is 'DB2/UDB' (that is, DB2 on
Linux, UNIX, Windows).

� If the setting is 'N', then the PDA marks the sort as not-allowed-for-pushdown
(pushdown=0 in db2trc), and the optimizer is not allowed the option of
pushing down the sort.

� If the setting is 'Y', then the sort is marked as allowed-for-pushdown
(pushdown=1 in db2trc), and the optimizer the option of deciding whether to
push down the sort based on cost.

Best practices
We recommend the following best practices for enhancing sort performance and
tuning the SORTHEAP, SHEAPTHRES, and SHEAPTHRES_SHR parameters:

� Avoid sorts as far a possible by defining appropriate indexes on tables and
writing efficient SQL. Use the Design Advisor Wizard or db2advis command
and EXPLAIN against all long-running queries to verify index access.

� Start with the default values, and tune SORTHEAP, SHEAPTHRES, and
SHEAPTHRES_SHR to minimize overflows and non-piped sorts and then
tune them for optimal values.

Note: Over configuring these parameters without adequate real memory to
back it up can result in system paging, which is detrimental to overall
performance, even though non-overflow piped sorts are indicated.

 Chapter 3. Key performance drivers of DB2 II V8.2 95

For critical workloads where frequent large sorts are performed, consider
setting up a representative workload and tuning SORTHEAP, SHEAPTHRES,
and SHEAPTHRES_SHR for that workload before adopting it in the
production environment.

� Minimize sorts that cannot be pushed down.

– For data sources on workstation platforms that have the same/similar code
page to the DB2 II server, consider creating the DB2 II database with
'COLLATE USING IDENTITY' so that the DB2 II database and the
workstation data sources will have the same collating sequence, and then
set the server option COLLATING_SEQUENCE to 'Y'.

– For data sources that do not have the same collating sequence as the DB2
II database, investigate the data that is in CHAR/VARCHAR columns that
will be used in ORDER BY and WHERE < /WHERE > clauses. If all
numeric characters or if a sort at the data source will yield the same result
as a sort for the same data at the DB2 II server, then set column option
NUMERIC_STRING to 'Y'.

� For sorts that cannot be pushed down, estimate their size using DB2 II
explain tools and increase either SORTHEAP or IBMDEFAULTBP so that the
sorts will be contained in memory.

Performance-monitoring metrics
Metrics for monitoring SORTHEAP, SHEAPTHRES, and SHEAPTHRES_SHR
may be obtained from the snapshot monitor and appropriate sorting health
indicators in the Health Center.

Figure 3-14 on page 97 shows sort-relevant snapshot information from the get
snapshot for dbm command, and Figure 3-15 on page 97 shows sort-relevant
information from the get snapshot for db command.

Restriction: It is not possible to make the collating sequence of the
DB2 II database identical to the collating sequence of either the
mainframe or the iSeries systems since the core codepages (EBCDIC
on mainframe/iSeries versus ASCII on workstation) have differences.

96 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 3-14 Database manager snapshot showing sort monitor elements

Figure 3-15 Database snapshot showing sort monitor elements

The following fields are of interest for tuning SORTHEAP, SHEAPTHRES, and
SHEAPTHRES_SHR:

� Database manager snapshot

– Private sort heap high water mark is a water mark of the total number of
allocated pages of sort heap space for all private sorts across all
databases.

Important: All the fields in the snapshot monitor (whether they are water
marks, counters, or gauges) should be monitored over many representative
intervals spread out over a few weeks, to detect consistent trends before
reacting with configuration changes.

Note that counter type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

 Chapter 3. Key performance drivers of DB2 II V8.2 97

– Post threshold sorts is a counter that records the total number of sorts
that have requested heaps after the sort heap threshold (SHEAPTHRES)
has been exceeded.

– Piped sorts requested is a counter that records the total number of piped
sorts that have been requested.

– Piped sorts accepted is a counter that records the total number of piped
sorts that have been accepted. A piped sort is rejected if the sort heap
threshold (SHEAPTHRES) will be exceeded when the sort heap is
allocated for the sort.

� Database snapshot

– Total Private Sort heap allocated is a gauge that records the total
number of allocated pages of sort heap space for all private sorts.

– Total Shared Sort heap allocated is a gauge that records the total
number of allocated pages of sort heap space for all shared sorts.

– Shared Sort heap high water mark is a water mark of the total number of
allocated pages of sort heap space for all shared sorts for this database.

– Total sorts is a counter that records the total number of sorts that have
been executed.

– Total sort time (ms) is a counter that records the total elapsed time in
milliseconds for all sorts that have been executed.

– Sort overflows is a counter that records the total number of sorts that ran
out of sort heap and may have required disk space for temporary storage.

– Active sorts is a gauge that records the number of sorts in the database
that currently have a sort heap allocated.

Consider modifying SORTHEAP, SHEAPTHRES, and SHEAPTHRES_SHR
under the following circumstances:

� Compare the water marks for Private Sort heap high water mark and Total
Shared Sort heap high water mark with the corresponding values of
SHEAPTHRES and SHEAPTHRES_SHR.

If they are significantly lower than the configuration parameters, consider
setting the configuration parameters to a few percentage points above the
water mark levels.

Note: Database manager and database snapshots only indicate the presence
of a sort problem, not the SQL statements causing them. In order to identify
the SQL statements invoking sorts, a dynamic SQL snapshot or an event
monitor for SQL statements is required.

98 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

If Private Sort heap high water mark is higher than SHEAPTHRES, then it
means that less than the desired amount of sort heap is being allocated. This
should register as Post threshold sorts. Increase the SHEAPTHRES value
a few percentage points above the water mark.

If Shared Sort heap high water mark is close or equal to the
SHEAPTHRES_SHR configuration parameter setting, increase its value a
few percentage points above the water mark. User applications may receive
the SQL0955C error message.

� If the percentage of overflowed sorts (Sort overflows / Total sorts) is high,
increase SORTHEAP and/or SHEAPTHRES.

� If Post threshold sorts relative to Total sorts are high, increase
SHEAPTHRES and/or decrease SORTHEAP.

Decreasing SORTHEAP may help since smaller allocations are less likely to
cause the SHEAPTHRES threshold to be exceeded. However, decreasing
SORTHEAP may cause sort overflows to occur, which is undesirable.

� If piped sorts rejected (Piped sorts requested - Piped sorts accepted)
relative to Piped sorts requested is high, increase SORTHEAP or
SHEAPTHRES.

� If there are user complaints about receiving SQL0955C error messages
(which indicate that the shared memory sorts threshold has been exceeded),
increase SHEAPTHRES_SHR.

� Federated environments will traditionally have a number of small and large
sorts, and the settings of SORTHEAP, SHEAPTHRES, and
SHEAPTHRES_SHR parameters as well as appropriate buffer pool
assignments and proper temporary table space placement will have a
significant impact on sort performance.

Communication buffers
This RQRIOBLK database manager configuration parameter specifies the size of
the communication buffer between remote applications and their database
agents on the database server. When a database client requests a connection to
a remote database, this communication buffer is allocated on the client. On the
database server, a communication buffer of 32767 bytes is initially allocated, until
a connection is established and the server can determine the value of
RQRIOBLK at the client. RQRIOBLK also determines the maximum size of
blocks that DB2 II can use in communication with the data source client software.

Note: In a federated server environment accessing remote data sources, the
client is the federated server, and the remote data source is the database
server.

 Chapter 3. Key performance drivers of DB2 II V8.2 99

Once the database server knows this value, it will reallocate its communication
buffer if the client’s buffer is not 32767 bytes. In addition to this communication
buffer, this parameter is also used to determine the I/O block size at the database
client when a blocking cursor is opened. This memory for blocked cursors is
allocated out of the application’s private address space, so you should determine
the optimal amount of private memory to allocate for each application program. If
the database client cannot allocate space for a blocking cursor out of an
application’s private memory, a non-blocking cursor will be opened.

The communication buffer is allocated when:

� A remote client application issues a connection request for a server database.
� A blocking cursor is opened, additional blocks are opened at the client.

The communication buffer is deallocated when:

� The remote client application disconnects from the server database.
� The blocking cursor is closed.

The default value is 32767 bytes and the maximum is 65535 bytes, and this
parameter is not configurable online.

Performance considerations
If the request to the database manager, or its associated reply, does not fit into
the buffer, it will be split into two or more send-and-receive pairs. The size of this
buffer should be set to handle the majority of requests using a single
send-and-receive pair.

You should also consider the effect of this parameter on the number and potential
size of blocking cursors. Large row blocks may yield better performance if the
number or size of rows being transferred is large; for example, if the amount of
data is greater than 4096 bytes. However, the trade-off is that the larger record
blocks increase the size of the working set memory for each connection.

Best practices
We recommend the following best practices for tuning RQRIOBLK:

1. If your application’s requests are generally small and the application is
running on a memory-constrained system, you may wish to reduce the value
of this parameter. If your queries are generally very large, requiring more than
one send and receive request, and your system is not constrained by
memory, you may wish to increase the value of this parameter.

Note: The size of the request is based on the storage required to hold the
input SQLDA, all of the associated data in the SQLVARs, the output SQLDA,
and other fields that do not generally exceed 250 bytes.

100 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

2. Compute RQRIOBLK as follows if the information is available:

rqrioblk = ((size of input SQLDA) + (size of each input SQLVAR) + (size of
output SQLDA) + 250))

3. Let RQRIOBLK default to 32767 bytes and then tune for optimal value.

4. If there will be large results from the data source to II:

a. Increase network speed between the DB2 II server and the data source.

b. Decrease the number of routers between the DB2 II server and the data
source.

c. Increase the network packet size.

d. Examine/increase the communication buffer or packet size between the
data source client and the data source server, for example, Sybase
packet_size.

e. Increase RQRIOBLK.

Performance-monitoring metrics
DB2 does not provide a direct mechanism to monitor and tune RQRIOBLK. You
instead need to monitor other elements in an application snapshot that indirectly
relates to RQRIOBLK. The monitoring elements of interest in an application
snapshot, as generated by a get snapshot for applications command, are
shown in Example 3-6.

Example 3-6 Snapshot showing block remote cursor information

Rejected Block Remote Cursor requests = 50
Accepted Block Remote Cursor requests = 1000

The fields of interest in Example 3-6 for tuning RQRIOBLK are:

� Rejected Block Remote Cursor requests is a counter that records the
number of times a request for a blocking cursor at the database server was
rejected and the request was converted to a non-blocking cursor.

If there are many cursors blocking data, the communication heap may
become full. When this heap is full, an error is not returned; instead, no more

Important: All the fields in the snapshot monitor (whether they are water
marks, counters, or gauges) should be monitored over many representative
intervals spread over a few weeks, to detect consistent trends before reacting
with configuration changes.

Note that counter type monitoring elements should be reset at the beginning
of each monitoring interval by issuing the RESET MONITOR command.

 Chapter 3. Key performance drivers of DB2 II V8.2 101

I/O blocks are allocated for blocking cursors. If cursors are unable to block
data, performance can be affected.

� Accepted Block Remote Cursor requests is a counter that records the
number of times a request for an I/O block at the database server was
accepted.

Compute the following metric for tuning purposes. The percentage of rejected
block remote requests (PRBRR) is as follows:

PRBRR = ((Rejected Block Remote Cursor requests) / (Accepted Block Remote
Cursor requests + Rejected Block Remote Cursor requests)) * 100

Consider increasing RQRIOBLK:

� If PRBRR is consistently high; QUERY_HEAP_SZ should also be increased
correspondingly.

� When applications receive SQL1221N or SQL1222N messages or see
DIA3605C in the db2diag.log, increase RQRIOBLK incrementally until these
conditions do not reappear.

The number of send and receive requests occurring for a particular application
can be found by enabling the CLI trace facility.

3.4.3 Data source considerations
The DB2 optimizer generates an access plan based on a number of factors, as
discussed in “Query optimization” on page 68, and then generates a query
fragment to be executed at the remote data source.

This query fragment sent to the data source for execution can be identified in the
RMTQTXT field of the SHIP operator in db2exfmt output for the query, as shown
in Example 3-7.

If it is suspected that the query fragment sent to the remote data source is not
performing well, then it can be tuned according to the unique considerations
associated with the particular data source by that data source administrator.

Example 3-7 db2exfmt output with query fragment in RMTQTXT of SHIP operator

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

102 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

DB2_VERSION: 08.02.0
SOURCE_NAME: TOOL1E00
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-07-02-19.24.26.071589
EXPLAIN_REQUESTER: KAWA

Database Context:

Parallelism: None
CPU Speed: 4.723442e-07
Comm Speed: 100
Buffer Pool size: 78000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 1 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER_COUNT
FROM ORA.ORDERS
WHERE O_ORDERKEY BETWEEN 1 AND 1000000 AND EXISTS
 (SELECT *
 FROM DB2.LINEITEM
 WHERE L_ORDERKEY = O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE)
GROUP BY O_ORDERPRIORITY
ORDER BY O_ORDERPRIORITY

 Chapter 3. Key performance drivers of DB2 II V8.2 103

Optimized Statement:

SELECT Q4.$C0 AS "O_ORDERPRIORITY", Q4.$C1 AS "ORDER_COUNT"
FROM
 (SELECT Q3.$C0, COUNT(*)
 FROM
 (SELECT DISTINCT Q2.O_ORDERPRIORITY, Q2.$P-ROWID$
 FROM DB2.LINEITEM AS Q1, ORA.ORDERS AS Q2
 WHERE (Q1.L_ORDERKEY = Q2.O_ORDERKEY) AND (Q1.L_COMMITDATE <
 Q1.L_RECEIPTDATE) AND (Q2.O_ORDERKEY <= 1000000) AND (1 <=
 Q2.O_ORDERKEY)) AS Q3
 GROUP BY Q3.$C0) AS Q4
ORDER BY Q4.$C0

Access Plan:

Total Cost: 222926
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 5
 GRPBY
 (2)
 222926
 16810.7
 |
 250002
 TBSCAN
 (3)
 222896
 16810.7
 |
 250002
 SORT
 (4)
 222762
 16810.7
 |
 250002
 MSJOIN
 (5)
 222162
 16810.7
 /---+---\

104 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 250002 1.99876
 SHIP FILTER
 (6) (9)
 37714.3 184277
 9486.34 7324.35
 | |
 1.5e+07 499694
 NICKNM: ORA SHIP
 ORDERS (10)
 184277
 7324.35
 |
 5.99861e+07
 NICKNM: DB2
 LINEITEM

1) RETURN: (Return Result)
Cumulative Total Cost: 222926
Cumulative CPU Cost: 4.89221e+09
Cumulative I/O Cost: 16810.7
Cumulative Re-Total Cost: 222327
Cumulative Re-CPU Cost: 3.62365e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 222794
Estimated Bufferpool Buffers: 0
Remote communication cost:397356

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

9) From Operator #2

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

 Chapter 3. Key performance drivers of DB2 II V8.2 105

+Q5.O_ORDERPRIORITY(A)+Q5.ORDER_COUNT

........lines have been removed......................

6) SHIP : (Ship)
Cumulative Total Cost: 37714.3
Cumulative CPU Cost: 4.40279e+08
Cumulative I/O Cost: 9486.34
Cumulative Re-Total Cost: 168.177
Cumulative Re-CPU Cost: 3.56048e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 100.032
Estimated Bufferpool Buffers: 9486.51
Remote communication cost:139105

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."O_ORDERKEY", A0."O_ORDERPRIORITY", A0.ROWID FROM
"IITEST"."ORDERS" A0 WHERE (1 <= A0."O_ORDERKEY") AND (A0."O_ORDERKEY" <=
1000000) ORDER BY 1 ASC

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object ORA.ORDERS

Estimated number of rows: 1.5e+07
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID

Output Streams:

2) To Operator #5

106 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 250002
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY(A)+Q2.RID+Q2.$P-ROWID$
+Q2.O_ORDERPRIORITY

........lines have been removed......................

10) SHIP : (Ship)
Cumulative Total Cost: 184277
Cumulative CPU Cost: 2.47251e+09
Cumulative I/O Cost: 7324.35
Cumulative Re-Total Cost: 253.012
Cumulative Re-CPU Cost: 5.35653e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 65.049
Estimated Bufferpool Buffers: 7325.35
Remote communication cost:258251

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."L_ORDERKEY" FROM "TPCD"."LINEITEM" A0 WHERE
(A0."L_COMMITDATE" < A0."L_RECEIPTDATE") AND (A0."L_ORDERKEY" <= 1000000) AND
(1 <= A0."L_ORDERKEY") ORDER BY 1 ASC, A0."L_COMMITDATE" ASC,
A0."L_RECEIPTDATE" ASC FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

3) From Object DB2.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 4
Subquery predicate ID: Not Applicable

 Chapter 3. Key performance drivers of DB2 II V8.2 107

Column Names:

+Q1.RID+Q1.L_RECEIPTDATE+Q1.L_COMMITDATE
+Q1.L_ORDERKEY

Output Streams:

4) To Operator #9

Estimated number of rows: 499694
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMITDATE(A)
+Q1.L_RECEIPTDATE(A)

Objects Used in Access Plan:

Schema: DB2
Name: LINEITEM
Type: Nickname

Time of creation: 2004-06-11-21.33.19.482113
Last statistics update: 2004-06-11-22.38.00.532171
Number of columns: 16
Number of rows: 59986052
Width of rows: 133
Number of buffer pool pages: 2081039
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: ORDERS
Type: Nickname

Time of creation: 2004-06-11-21.33.10.349783
Last statistics update: 2004-06-11-22.32.45.545670
Number of columns: 9
Number of rows: 15000000
Width of rows: 49
Number of buffer pool pages: 443840

108 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Best practices
We recommend the following best practices for tuning data sources:

� If there is a choice between creating nicknames for tables or for views, create
nicknames for tables.

� Keep statistics of tables at data sources current.

� Tune the data source for SQL statements coming from DB2 II, such as adding
indexes.

3.4.4 Efficient SQL queries
In general, all the best practices associated with writing efficient SQL for
non-federated queries apply to federated environments as well. Refer to the
redbook DB2 UDB ESE V8 non-DPF Performance Guide for High Performance
OLTP and BI, SG24-6432; and the IBM DB2 UDB Administration Guide:
Performance Version 8.2, SC09-4821, for a complete discussion of this topic.

The redbook DB2 UDB’s High-Function Business Intelligence in e-business,
SG24-6546, provides guidelines on SQL coding practices to encourage MQT
routing.

The following additional considerations apply to creating nicknames and
federated queries. Best practices can be broadly classified as being nickname
related, query related, or miscellaneous.

Nickname-related best practices
In general, nickname-related best practices apply to DBAs as follows:

� Ensure that nickname index definitions and statistics are current with respect
to the remote data source. This is by far the most significant factor that can
positively influence the performance of a federated query, since it would
facilitate the generation of a superior access plan.

� Define informational referential integrity and functional dependency
constraints on nicknames if appropriate. This provides the DB2 optimizer with
additional information that allows it to consider rewriting the query into a more
efficient form.

 Chapter 3. Key performance drivers of DB2 II V8.2 109

� When multiple tables at a single remote data source need to be joined in a
query, consider creating a view at the remote data source of such a join and a
nickname on this view. This facilitates simpler user queries as well as
pushdown in most cases.

The disadvantage of creating nicknames over remote views is that it hides the
details of the query from the optimizer and requires the DBA to manually
update the statistics in the global catalog since statistics are not captured
automatically on nickname creation on a view.

� When defining the local data types for a nickname column that is joined with
columns of other nicknames/tables, ensure that the local data types of the
columns involved match perfectly in terms of scale and precision. Mismatched
data types may result in less pushdown, or the exclusion from consideration
of merge scan and hash joins for access path selection.

This may require modifying the default data type mapping provided by DB2 II
for a given data source.

� If there is a mismatch in data type, precision/length, and scale between join
columns of two nicknames, the techniques to make them alike are:

– Alter the nickname to change the local type of the columns of one of the
nicknames to match the type, precision/length, and scale of the join
column of the other nicknames. This is only allowed if the new data type is
compatible with the existing data type. Also, this should not be done if it
will cause value truncation or padding that will cause join results to be
invalid.

– Add a column to the table at one of the data sources with the new column
having the same type, length/precision, and scale as the join column in the
other data source. Update the new column with values from the former join
column in the same table. Create a unique index that includes the column
and update statistics for the table. Then drop and re-create the nickname
for the table and use the new column in the join.

– Create a view at one of the data sources in which the join column is cast
with the same type, length/precision, and scale as the join column in the
other data source. Create a new nickname for the view, but keep the old

Attention: If the data actually violates informational constraints that have
been defined, inconsistent results may be returned.

Attention: This approach is not generally recommended except in
extenuating circumstances such as pushdown not occurring with
nicknames on remote tables.

110 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

nickname for the table. Obtain the index information and statistics from the
DB2 II catalog for the old nickname on the table. Use this information to
CREATE INDEX…SPECIFICATION only, and update the statistics for the
new nickname that is for the view. Use the new nickname in the join. When
you want to update the statistics for the nickname for the view,
drop/re-create or run the Statistics Update facility or the NNSTAT stored
procedure for the old nickname for the table, and then use the index
information and statistics for this old nickname to update the index
information and statistics for the nickname that is for the view.

Query-related best practices
In general, query-related best practices apply to the application programmer, as
follows:

� Consider using the SET SERVER OPTION to temporarily change the server
options for a given query to override default or global settings to fine tune it.
This will minimize the performance impact on other queries that benefit from
the server settings recorded in the global catalog.

� Organize queries involving outer joins more efficiently by using parentheses
to group the same server nickname outer join together, as shown in
Example 3-8.

Example 3-8 Writing outer joins more efficiently

--Assume s1t1 and s1t2 are two nicknames on server s1
--Assume s2t1 and s2t2 are two nicknames on server s2

-- Poorly written outer join query
select *
from s1t1 left outer join s2t1 on s1t1.c1 = s2t1.c1

left outer join s2t2 on s2t1.c2 = s2t2.c1
left outer join s1t2 on s1t1.c2 = s1t2.c2

--
-- Same query written more efficiently
-- This enables the optimizer to consider pushing down the outer join of
-- nicknames of the same data source to the remote server
select *
from (select s1t1.c1 as c1 from s1t1 left outer join s1t2 on s1t1.c2 = s1t2.cs)

as temp1

Note: In DB2 V8.2 when DB2_MAXIMAL_PUSHDOWN is set to ‘Y’, the
outer joins can be reordered and grouped together without users having to
do this themselves.

 Chapter 3. Key performance drivers of DB2 II V8.2 111

left outer join
(select s2t1.c1 as c1 from s2t1 left outer join s2t2 on s2t1.c2 = s2t2.c1)

as temp2
on temp1.c1 = temp2.c1

Miscellaneous best practices
If a function template is defined and mapped, it should be defined as
DETERMINISTIC and NO EXTERNAL ACTION, if possible. This facilitates
additional query rewrite possibilities for the DB2 optimizer.

3.4.5 Hardware and network
The speed of the network between DB2 II and the data sources, and the
performance characteristics of the data sources’ and DB2 II’s hardware
resources, impact the performance of federated queries.

Network
The network between the DB2 II server and data sources should be 100 Gbit or
faster. One Gbit is highly recommended if there are a lot of interactions between
DB2 II and data sources during execution of queries or if there are large result
sets returned from the data sources to DB2 II.

We also recommend the following:

� Minimize the number of router hops between the DB2 II server and the data
sources.

� Tune the network packet size for large transfers if there will be large result
sets.

Hardware resources at the data sources
Best performance is usually achieved if all or most SQL is pushed down to data
sources. Therefore, most of the new workload added by DB2 II users will be
created at the data sources.

Hardware resources at DB2 II
If DB2 II functionality is added to a DB2 UDB system, the hardware resources to
support the management and access to local tables should be adequate to
support the workload of the added DB2 II functionality. This is because most SQL
for remote data should be pushed down to data sources for superior
performance. Therefore, CPU requirements for the DB2 II functionality should
only be a small addition to the CPU requirements to process the SQL on local
data. If there are sorts and temporary tables in the DB2 II workload, they can use

112 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

the same SORTHEAP and buffer pool for temporary tables for the processing on
the local data. The only additional thing to consider is the network adapter speed
so that the federated queries have a fast network connection to the remote data
sources involved in queries.

The priority in terms of hardware components for DB2 II functionality should
typically be:

1. Network adapter

2. Memory for sorts, temp tables, hash/merge scan joins

3. CPU—particularly if there will be large result sets for users

4. Disk configuration—but only for when sorts and temp tables spill from the
buffer pool to disk

 Chapter 3. Key performance drivers of DB2 II V8.2 113

114 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Chapter 4. Performance problem
determination scenarios

In this chapter, we discuss some commonly encountered performance problems
in a DB2 Information Integrator (II) environment and describe scenarios for
identifying and resolving such problems.

The topics covered include:

� DB2 II hypotheses hierarchy
� Monitoring best practices
� Performance problem scenarios

4

© Copyright IBM Corp. 2004. All rights reserved. 115

4.1 Introduction
Most IT environments today are complex infrastructures involving heterogeneous
network, hardware, and software components organized in multi-tier
configurations. Business applications share this complex IT infrastructure that is
managed by IT professionals skilled in their particular domains of expertise, for
example, network administrators, operating system administrators, Web
application server administrators, and database administrators.

Users may experience performance problems for reasons such as network
connectivity and bandwidth constraints; system CPU, I/O, and memory
constraints; software configuration limitations and constraints; poor systems
administration skills; poor application design; and invalid assumptions about the
workload.

In 2.4, “Problem determination methodology” on page 37, we discuss a general
problem determination methodology, and recommend a hypotheses validation
hierarchy that should typically be followed during problem diagnosis of DB2 II
applications in general.

For the typical DB2 II environment shown in Figure 4-1 on page 117, the
diagnosis process should sequentially eliminate the cause of the problem as
follows:

1. Network related—between the client and the Web application server

2. Web application server related—both system (CPU, I/O, memory) and
various configuration settings

3. Network related—between the Web application server and the federated
database server

4. Federated database server related—system (CPU, I/O, memory),
configuration settings, routine DBA maintenance activities such as collecting
statistics or creating index specifications, and setting appropriate options for
federated objects such as wrappers, servers, and nicknames

5. Network related—between the federated database server and the data
source server

6. Application design related—nicknames and SQL

Figure 4-1 on page 117 describes one possible DB2 II environment, having both
remote and local clients accessing a DB2 II federated database. While this
environment shows the Web application server and the database server on
different systems, other application environments may be simpler or more
complex depending upon an organization’s unique configuration and application
workload requirements.

116 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 4-1 A typical DB2 II environment and hypotheses hierarchy

Important: Following this sequence is strongly recommended in order to
ensure that the DBA does not expend needless effort on troubleshooting DB2
II and tuning SQL, when the root cause of the performance problem
experienced by the user potentially exists elsewhere. For example, network
bandwidth constraints or database performance at a data source server can
manifest as erratic or poor response times for a DB2 II federated application
even when the DB2 II federated server and application is optimally tuned.

Important: Depending upon the triggering event of the performance problem,
it may be possible to skip certain hypotheses validation altogether; for
example, when an explicit alert about a nickname being invalid is the
triggering event, one can ignore hypotheses such as network connectivity and
bandwidth constraints, Web application server constraints, and CPU and I/O
constraints (in both the Web application server and the DB2 federated
database server) as a potential cause of the problem. More on this later.

Hypotheses
Hierarchy

1 or more
federated data

sources

Local
data

data

DB2 II Federated
Server

Local
Clients

System CPU, I/O, Memory
DB2 related
Federated related

System CPU, I/O, Memory
Database tuning

Connectivity
Bandwidth

Remote
Clients

Network

Web Application
Server (WAS)

System CPU, I/O, Memory
WAS related
SQL related

Network

Remote
Clients Connectivity

Bandwidth

Network

 Chapter 4. Performance problem determination scenarios 117

Table 4-1 provides a very high-level overview of the resource constraint
conditions associated with the components that an application utilizes in the
execution of its functions, along with tools that can be used to investigate them.

Table 4-1 Typical problem areas associated with DB2 II performance

Please refer to the appropriate manuals for information about the tools
mentioned in Table 4-1.

Component Resource constraint conditions Tools

Network � Connectivity and bandwidth ip ping, connect, db2 ping, ftp

System � CPU utilization
� I/O utilization and performance
� Memory paging

� vmstat, nmon, uptime,
ruptime, Task Manager,
Performance Monitor

� iostat, nmon, Task Manager,
Performance Monitor,
filemon

� vmstat, nmon, svmon, ipcs,
Task Manager, Performance
Monitor, Memory Visualizer

Web
application
server

� System resource constraints
� Connections to DB2
� Configuration parameters

� Same as system
� Tivoli® Performance Viewer
� WebSphere tools

DB2
federated
server

� System resource constraints
� DB2 resource constraints
� Federated definitions
� DB2 application design

� Same as system
� DB2 system monitor DB2

Control Center (Health
Center)

� DB2 commands and tools,
explain information

Federated
data source

� System resource constraints
� Database performance tuning

� Varies by operating system
platform and type of
database

Important: In most cases, the DBA has no jurisdiction over monitoring and
tuning network, system, and Web application server performance drivers,
since they are the responsibility of the appropriate administrator.

The objective here is to make the DBA aware of the critical impact on the
performance of their DB2 II environment by the various network, operating
system, and Web application server performance drivers, so that he may be in
a position to negotiate more effectively with the appropriate administrators
responsible for these performance drivers.

118 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

In the following sections we focus on:

� Resource constraint conditions related to DB2 Information Integrator, and
recommend the hypotheses hierarchy to adopt for problem diagnosis

� Monitoring best practices for routine, online/event, and exception monitoring
of a DB2 II environment

� Performance problem scenarios

4.2 DB2 II hypotheses hierarchy
Once the network and systems have been tentatively eliminated as the potential
source of the performance problems, we need to narrow the focus to the
federated database server itself. However, within the federated database server
itself, there is a definite hierarchy of hypotheses validation that must be adopted
for effective problem diagnosis, as shown in Figure 4-2 on page 120.

Note: We used DB2 UDB ESE Version 8.2 and DB2 II Version 8.2 in all the
scenarios discussed in the following section.

 Chapter 4. Performance problem determination scenarios 119

Figure 4-2 DB2 II hypotheses hierarchy

The overall flow is as follows:

� Ensure that the federated database server system is not constrained on
resources such as CPU, I/O, and memory; this is a system-wide diagnosis.

� Next ensure that system-wide DB2 II system resources are not being
constrained in any way; this includes connection limits being tripped, and the
sort and buffer pool (temporary table space) are not constrained in any way.
This is also a system-wide diagnosis.

Important: Figure 4-2 assumes that the DB2 II federated database server is
isolated on a separate system and does not have any local DB2 tables that
participate in user queries.

If local tables are involved, then all the considerations of tuning a DB2 system
would apply in addition. A discussion of tuning local tables is beyond the
scope of this publication. Please refer to the redbook DB2 UDB ESE V8
non-DPF Performance Guide for High Performance OLTP and BI,
SG24-6432, for a complete discussion of this subject.

Connections
Sorts
Buffer pool

Federated server
or

Remote data source

Federated server
Statistics
Index specifications
Pushdown
Join
Parallelism

Remote data source
Pushdown
Remote source type
specific tuning

BOTH

Query-specific
diagnosis

System-wide
diagnosis

For a given query

System CPU
System I/O
System Memory

DB2 II Server
Resource Constraints

DB2 II Federated Server System
 Resource Constraints

120 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� After these system-wide items are tentatively eliminated as potential causes
of performance problems, we need to identify and focus on the specific query
experiencing the performance problem.

This involves determining whether the query’s performance problem is at the
remote data source or on the federated server side, or both. This is primarily
determined by a combination of DB2 EXPLAIN output for the query, the
metrics obtained from the dynamic cache using the get snapshot for
dynamic sql on <dbname> command, and the get snapshot for
remote_applications on <dbname> or get snapshot for all
remote_applications command.

Note: The approach used to pinpoint the problem query depends upon
whether the query is currently running.

� If the query is not currently running:

– You may check the contents of the global dynamic cache to
determine long-running queries and try to associate them with the
application experiencing performance problems.

– You may want to ask the user if the query can be rerun so that the
problem can be reproduced. This may be the easiest way and
provide you with the best diagnostics to analyze the problem. The
CLI trace may be enabled if appropriate for more detailed
diagnostics information.

� If the query is currently running, there are tools such as the snapshot
monitor (such as the command get snapshot for all
remote_applications), DB2 Performance Expert, and other third-party
monitoring tools that can assist in identifying currently executing
queries and the resources they are consuming.

If such tools are not available, a possible approach is to take a snapshot
of all applications that are currently executing against the database, and
use your knowledge of the application names, connection times, and
statement text to identify the poorly performing query.

 Chapter 4. Performance problem determination scenarios 121

Figure 4-3 Triggering event determines entry into DB2 II hypotheses hierarchy

Important: As mentioned earlier, depending upon the triggering event for
performance problem diagnosis, it may be possible to skip certain
hypotheses validation altogether and enter the hypotheses hierarchy at a
lower point. This idea is highlighted in Figure 4-3. For instance, widespread
user complaints involving different applications would tend to point to a
system-wide performance problem (entering the DB2 II hypotheses
hierarchy at the top by beginning with the network), while pointed
complaints from few users of a specific application/query would tend to
point to performance problems with that particular application/query. In the
latter case, one could conceivably ignore the system-wide hypotheses
(entering the DB2 II hypotheses hierarchy at the top by beginning with the
network) and focus on identifying the problem query (entering the DB2 II
hypotheses hierarchy lower down) and performing diagnosis on it to
establish the root cause.

Less likely to be a network or system-wide
problem

Therefore, assume problem related to a
specific query

Yes No
Query currently running?

Identify the problem query

Analyze EXPLAIN output and dynamic SQL cache output (if available) to determine
the root cause of the performance problem

User complaints

single/few manysingle/few complaints
or

many?
More likely to be a network or a system

wide problem
Therefore follow the network, federated
server system, DB2 II server hierarchy

Capture contents of dynamic SQL
cache, EXPLAIN output, and correlate

fragments

Capture EXPLAIN output
Dynamic SQL cache information and

snapshot monitor for remote
applications information may be

incomplete

122 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� If the performance problem is determined to be primarily at the federated
server, then a number of possible items need to be investigated, including:

– Current statistics about nicknames in the federated global system catalog.

– Current index specifications on nicknames in the federated global system
catalog.

– Degree (full, partial, or none) of pushdown of predicates down to the
remote data sources. If partial or none, one needs to further investigate
the cause, which may include the syntax of the query, or the server or
column nickname options.

– Type of join chosen by the DB2 optimizer; for example, a hash join may
seem to be more appropriate for the query even though the DB2 optimizer
chose a nested loop join.

– Inhibition of intra-partition and inter-partition parallelism, which is
appropriate when local data access is involved in the query. One of the
causes could be the default setting of the INTRA_PARALLEL database
manager configuration parameter. Check the setting of wrapper option
DB2_FENCED. Full exploitation of parallelism when nicknames and local
tables are joined requires that wrapper option DB2_FENCED be set to 'Y'.
This is also required for inter-partition parallelism to be enabled for
nickname-only queries (use of Computational Partition Groups) for
processing of large intermediate result sets and non-pushed-down SQL
operations.

� If the performance problem is determined to be primarily at the remote data
source, then appropriate tuning strategies unique to the type of remote data
source need to be adopted by the remote administrator.

However, in the case of remote relational databases, one also needs to
investigate the degree of pushdown of predicates to determine if any of the
DB2 II configuration options (related to the DB2 database manager, DB2 II
server, or DB2 II nickname columns) need review or whether the query syntax
itself is inhibiting pushdown.

� If the performance problem is at both the federated server and the remote
data source, then all the items mentioned should be investigated together.

Each of the items in the hierarchy shown in Figure 4-2 on page 120 are
described in further detail in the following subsections.

4.2.1 DB2 II federated database server resource constraints
The system on which the DB2 II federated database server is running needs to
be monitored to ensure that CPU, I/O, and memory consumption is within normal
bounds before validating hypotheses further down in the hierarchy.

 Chapter 4. Performance problem determination scenarios 123

In some cases, this monitoring of the system resources in general, and DB2
processes in particular, may highlight potential problem areas that need further
investigation lower down in the hierarchy to pinpoint the problem; for example,
high I/O utilization may indicate excessive contention due to poor placement of
highly active table spaces on the same drive.

4.2.2 DB2 II resource constraints
Certain DB2 database manager and database configuration settings may result
in federated applications suffering response time problems due to the following:

� Connection constraints
� Sorting constraints
� Locking constraints
� Buffer pool constraints
� Cache size constraints such as catalog and package
� Miscellaneous constraints such as enabling intra-partition parallelism

Note: Checking whether DB2 processes are running is a special case of
system-level resource consumption checking.

The AIX ps -ef | grep db2 command and the Windows Task Manager can
be used to identify DB2 processes.

Important: Table 3-1 on page 55 highlights the performance impact of these
constraints in a federated environment depending upon whether it is a
dedicated federated server or a collocated federated server environment.

These constraints are not ordered by the impact they have on performance,
but by the sequence in which problem diagnosis is recommended.

In many cases, problem diagnosis is a holistic affair where a particular
problem is best diagnosed by combining monitoring results of multiple events
and entities.

124 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

The following subsections identify many of the key database manager
configuration and database configuration parameters associated with each of
these constraints, and describe some of the monitoring elements that should be
used to configure them optimally.

The monitoring elements are reported in the snapshot monitor, and may
represent water marks, counters, time, and gauges.

The DB2 Health Center also provides capabilities to monitor a number of key
performance elements and generate alerts when values in these performance
monitoring elements exceed or trip user-defined thresholds.

Important: This section does not discuss every monitoring and tuning knob
available in DB2 to manage the performance of the DB2 environment.

The purpose of this section is to promote a top-down discipline to the process
of problem diagnosis by discussing some of the more important DB2 resource
constraints that impact DB2 II performance.

In practice, the impact of a particular resource constraint on overall DB2 II
performance depends a great deal upon the nature and priorities of the
application workload and the resources available for its execution. For
example, with a read-only data warehousing type workload, locking
constraints are likely to play an insignificant role in overall DB2 II performance,
while sorting constraints will probably have considerable performance impact.

Note: Database manager configuration settings can be viewed by issuing the
following command:

db2 get dbm cfg

Database configuration settings can be viewed by issuing the following
command:

db2 get db cfg for <database_name>

Attention: When the monitoring elements are not high water marks, they
should be sampled at specific intervals over an extended period of time to get
a realistic view of system usage.

In some cases, it may be necessary to reset counters at the start of the
monitoring interval to get an accurate view of activity.

 Chapter 4. Performance problem determination scenarios 125

Connection constraints
Connection problems are generally manifested as messages generated by an
application when a connection exception is returned to the application. The
following database manager configuration and database configuration
parameters can constrain the number of connections permitted:

� Database manager configuration parameters
– max_connections
– maxagents
– maxcagents
– max_coordagents

� Database configuration parameters
– maxappls

To determine whether connection problems are being experienced, the snapshot
monitor should be invoked during the appropriate monitor interval, and relevant
fields checked, as follows:

� For the database manager configuration parameters MAX_CONNECTIONS,
MAXAGENTS, MAXCAGENTS, and MAX_COORDAGENTS, relevant
snapshot contents are shown in Example 4-1.

Example 4-1 dbm snapshot for connections

db2 => get snapshot for dbm
...
Remote connections to db manager = 0
Remote connections executing in db manager = 0
Local connections = 4
Local connections executing in db manager = 0
Active local databases = 1

High water mark for agents registered = 5
High water mark for agents waiting for a token = 0
Agents registered = 5
Agents waiting for a token = 0
Idle agents = 0
....
Agents assigned from pool = 2
Agents created from empty pool = 7
Agents stolen from another application = 0
High water mark for coordinating agents = 5
Max agents overflow = 0
Hash joins after heap threshold exceeded = 0
.....

126 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Check the following values:

– Sum of (Remote connections to db manager + Local connections)
should be less than MAX_CONNECTIONS.

If this value is the same as the MAX_CONNECTIONS, then it is likely that
some database connection requests were rejected.

– High water mark for agents registered should be less than
MAXAGENTS.

If this value is the same as the MAXAGENTS, then it means that
connections may have failed.

– High water mark for agents waiting for a token should be equal to zero
in unconstrained systems.

If this value is the same as the MAXCAGENTS, then it means that certain
applications had to wait since a transaction cannot be initiated without
getting a token.

– High water mark for coordinating agents should be less than
MAX_COORDAGENTS.

If this value is the same as the MAX_COORDAGENTS, then it means that
agent creations may have failed.

� For the database configuration parameter MAXAPPLS, relevant snapshot
contents are shown in Example 4-2.

Example 4-2 db snapshot for connections

db2 => get snapshot for all on sample
...
High water mark for connections = 3
Application connects = 3
Secondary connects total = 0
Applications connected currently = 3
Appls. executing in db manager currently = 0
Agents associated with applications = 3
Maximum agents associated with applications= 3
Maximum coordinating agents = 3
...

Check that the High water mark for connections is less than MAXAPPLS,
unless MAXAPPLS is specified as being AUTOMATIC.

Note: These values are not high water marks, and should therefore be
sampled at specific intervals over an extended period of time and
representative intervals to get a realistic view of system usage.

 Chapter 4. Performance problem determination scenarios 127

If this value is the same as the MAXAPPLS parameter, then it is likely that
some database connection requests were rejected.

Sorting constraints
Sorting problems are generally manifested as poor response times for the
application, and the occasional application error message when sort heap hard
limits are exceeded.

The following database manager configuration and database configuration
parameters can impact sort performance:

� Database manager configuration parameters

– SHEAPTHRES

� Database configuration parameters

– SHEAPTHRES_SHR
– SORTHEAP

To determine whether sorting problems are being experienced, the snapshot
monitor should be invoked during the appropriate monitor interval, and relevant
fields checked as follows:

� For the database manager configuration parameter SHEAPTHRES, relevant
snapshot contents are shown in Example 4-3.

Example 4-3 dbm snapshot for sorting

db2 => get snapshot for dbm
...
Private Sort heap allocated = 0
Private Sort heap high water mark = 277
Post threshold sorts = 0
Piped sorts requested = 10
Piped sorts accepted = 10
...
Agents assigned from pool = 2
Agents created from empty pool = 7
Agents stolen from another application = 0
High water mark for coordinating agents = 5
Max agents overflow = 0
Hash joins after heap threshold exceeded = 0
...

Check the following values:

– Private Sort heap high water mark should be less than SHEAPTHRES.

128 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

If this value is greater than or equal to SHEAPTHRES, then it means that
the sorts are not getting the full sort heap as specified by the SORTHEAP
database configuration parameter.

– Post threshold sorts should be very small if not zero.

When post threshold sorts occur, the database manager allocates a
smaller sort heap than that specified by the SORTHEAP database
configuration parameter. Subsequent sort heap allocations are reduced
even further until the total amount of sort heap in use falls below the
amount specified for SHEAPTHRES. This situation causes a serious
degradation in database performance and should be avoided.

– Difference between Piped sorts requested and Piped sorts accepted
should be very small if not zero.

If this value is high, then it means that piped sorts are being rejected
because the sort heap threshold (SHEAPTHRES) would be exceeded
when the sort heap is allocated for the sort.

– Hash joins after heap threshold exceeded should be very small if not
zero.

If this value is non-zero, then it means that a hash join heap request was
limited because of the sort heap threshold (SHEAPTHRES) being
exceeded. This value should be used in conjunction with Hash join
overflows to calculate the percentage of such occurrences.

� For the database configuration parameters SHEAPTHRES_SHR and
SORTHEAP, relevant snapshot contents are shown in Example 4-4 on
page 130.

Note: This value is not a high water mark, and should therefore be
sampled at specific intervals over an extended period of time and
representative intervals to get a realistic view of such occurrences.

Note: Here too, these values are not high water marks, and should
therefore be sampled at specific intervals over an extended period of
time and representative intervals to get a realistic view of such
occurrences.

Note: This value is not a high water mark, and should therefore be
sampled at specific intervals over an extended period of time and
representative intervals to get a realistic view of such occurrences.

 Chapter 4. Performance problem determination scenarios 129

Example 4-4 db snapshot for sorting

db2 => get snapshot for all on sample
...
Total Private Sort heap allocated = 0
Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Total sorts = 1
Total sort time (ms) = Not Collected
Sort overflows = 1
Active sorts = 0
...

Check the following values:

– Shared Sort heap high water mark should be less than
SHEAPTHRES_SHR.

If this value is equal to SHEAPTHRES_SHR, then it means that the total
amount of database shared memory that can be used for sorting at any
one time has been exceeded, and subsequent sorts will fail with an
SQL0955C message.

– Sort overflows should be very small if not zero.

A non-zero value indicates that sorts ran out of sort heap (SORTHEAP)
and had to overflow to disk. This value should be used in conjunction with
Total sorts to calculate the percentage of sorts that overflowed to disk.

Locking constraints
Locking problems are generally manifested as poor response times, and the
occurrences of deadlocks and time outs. Certain locking problems such as lock
escalations and deadlocks are also reported in the db2diag.log.

However, concurrency issues may arise with local data and MQTs, and the
isolation level passed to the remote data source. The likelihood of concurrency
issues with a federated query are more likely to occur with backend data sources
than the federated server. This section describes DB2 locking related parameters
as it relates to local data and MQTs, and remote DB2 data sources.

Note: This value is not a high water mark, and should therefore be
sampled at specific intervals over an extended period of time and
representative intervals to get a realistic view of such occurrences.

Note: Locking constraints are unlikely to cause performance problems in a
DB2 II environment since the activity tends to be predominantly read only
using the cursor stability isolation level.

130 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

The following database configuration parameters can severely impact the
amount of concurrency and throughput achievable:

� dlchktime
� locklist
� locktimeout
� maxlocks

To determine whether locking problems are being experienced, the snapshot
monitor should be invoked during the appropriate monitor interval, and relevant
fields checked, as shown in Example 4-5.

Example 4-5 db snapshot for locking

db2 => get snapshot for all on sample
...
Locks held currently = 1
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 540
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Agents currently waiting on locks = 0
Lock Timeouts = 0
...

Check the following values:

� The ratio of Time waited on locks and Lock waits is a measure of the
average duration of each lock wait, and should be subsecond or a few
seconds only.

If this number is high, it could be due to applications holding too many locks,
for extended durations, or lock escalations. It is also possible that extended
lock wait durations may point to a problem with the LOCKTIMEOUT value.

� Lock escalations and Exclusive lock escalations should be kept to a
minimum.

If a large number of escalations are seen over a short interval, then it could
mean that the LOCKLIST and/or MAXLOCKS values are too small. These
values should be evaluated in conjunction with Deadlocks detected, Lock
waits and Time waited on locks.

Note: Further detailed information about lock escalations can be obtained
from the db2diag.log.

 Chapter 4. Performance problem determination scenarios 131

� Deadlocks detected and Lock timeouts should be kept to a minimum.

If a large number of deadlocks and lock timeouts are seen over a short
interval, then it could mean that the DLCHKTIME value is too large and the
LOCKTIMEOUT value is too small. Here again, these values should be
evaluated in conjunction with Lock escalations, Exclusive lock
escalations, Lock waits and Time waited on locks.

Buffer pool constraints
Buffer pool problems are generally manifested as poor response times as a
result of increased synchronous I/Os or operating system paging. The key metric
to measure here is the hit ratio achieved—the higher the better.

Buffer pools are defined via the CREATE BUFFERPOOL SQL statement, and
are allocated at database activation. Buffer pools are used by tables, indexes,
and sort temporary table spaces.

Buffer pool information is typically gathered at a table space level, but the
facilities of the database system monitor can roll this information up to the buffer
pool and database levels.

To determine whether buffer pool problems are being experienced, the snapshot
monitor should be invoked during the appropriate monitor interval, and relevant
fields checked, as shown in Example 4-6.

Example 4-6 db snapshot for buffer pools

$ db2 "get snapshot for all on dtw"
.....
Buffer pool data logical reads = 5160
Buffer pool data physical reads = 1485
Buffer pool data writes = 0
Buffer pool index logical reads = 18371
Buffer pool index physical reads = 3064
Total buffer pool read time (ms) = 69774

Note: In all the above cases, the monitoring elements are counters or gauges
representing a specific point in time, and should therefore be sampled at peak
or heavy workload intervals to ascertain whether locking problems exist. This
should involve resetting the counters at the start of the monitoring interval.

Attention: In DB2 II environments with no local table access, the buffer pool of
interest is the one associated with the temporary tablespaces used in sorting.
This buffer pool should be tuned for optimal performance when federated
queries involve significant amounts of sorting.

132 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Total buffer pool write time (ms) = 0
Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Buffer pool index writes = 0
Asynchronous pool index page reads = 16
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 268
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
Direct reads = 236
Direct writes = 0
Direct read requests = 58
Direct write requests = 0
Direct reads elapsed time (ms) = 483
Direct write elapsed time (ms) = 0
Database files closed = 0
Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
Unread prefetch pages = 0
Vectored IOs = 0
Pages from vectored IOs = 0
Block IOs = 0
Pages from block IOs = 0
Physical page maps = 0

� Compute the total buffer pool hit ratio as:

(1 - ((Buffer pool data physical reads + Buffer pool index physical
reads) / (Buffer pool data logical reads + Buffer pool index logical
reads))) * 100%

� Compute the index hit ratio as:

(1 - ((Buffer pool index physical reads) / (Buffer pool index logical
reads))) * 100%

� Writes to the buffer pool associated with the temporary tablespace (Buffer
pool data writes and Asynchronous pool data page writes) indicate buffers
being written to disk, and may suggest increasing the number of buffers to
eliminate disk I/O.

Note: In this case, the monitoring elements are counters representing a
specific point in time, and should therefore be sampled at peak or heavy
workload intervals to ascertain whether buffer pool problems exist — this
should involve resetting the counters at the start of the monitoring interval.

 Chapter 4. Performance problem determination scenarios 133

Cache size constraints
There are several caches in DB2, and problems with their size are generally
manifested as poor response times as a result of a increased synchronous I/Os
or operating system paging.

To determine whether CATALOGCACHE_SZ and PCKCACHESZ problems are
being experienced, the snapshot monitor should be invoked during the
appropriate monitor interval, and relevant fields checked as shown in
Example 4-7.

Example 4-7 db snapshot for catalogcache_sz and pckcachesz

db2 => get snapshot for all on sample
...
Package cache lookups = 4
Package cache inserts = 2
Package cache overflows = 0
Package cache high water mark (Bytes) = 118968
Application section lookups = 6
Application section inserts = 2

Catalog cache lookups = 13
Catalog cache inserts = 5
Catalog cache overflows = 0
Catalog cache high water mark = 0
...

The following considerations apply to some of the fields described in
Example 4-2 on page 127:

� The hit ratio for the package cache is computed as follows:

(1 - (Package cache inserts / Package cache lookups)) * 100%

� Package cache overflows should be kept as zero.

Note: There are several database manager and database caches that can be
specified such as ASLHEAPSZ, AUDIT_BUF_SZ, JAVA_HEAP_SZ,
QUERY_HEAP_SZ, and APPLHEAPSZ to name a few. The objective is to
determine if these caches are too small or too big. Each one of these has
slightly different monitor elements to look at as described in the IBM DB2 UDB
System Monitor Guide and Reference, SC09-4847.

We focus here on CATALOGCACHE_SZ and PCKCACHESZ. The key
metrics to assess the efficiency of these caches are hit ratios, overflows, and
high water marks.

134 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

If this number is non-zero, then it means that a spillover has occurred into
other heaps such as LOCKLIST, thereby resulting in unnecessary lock
escalation and general performance degradation.

� Package cache high water mark (Bytes) represents the largest size
reached by the package cache, and can be used to determine the value for
the PCKCACHESZ database configuration parameter to avoid cache
overflows.

Miscellaneous constraints
There are a host of other database manager and database configuration
parameters that can impact the performance of DB2 II applications. Details of
their individual performance impact is beyond the scope of this publication.
Please refer to the redbook DB2 UDB ESE V8 non-DPF Performance Guide for
High Performance OLTP and BI, SG24-6432, for a complete discussion of this
subject.

Some of the parameters of interest are as follows:

� Database manager configuration parameters

– intra_parallel
– maxfilop and maxtotfilop
– rqrioblk
– num_poolagents

� Database configuration parameters

– chngpgs_thresh

Note: Except for the Package cache high water mark (Bytes) monitoring
element, the other elements reported are counters representing a specific
point in time, and should therefore be sampled at peak or heavy workload
intervals to ascertain whether package cache size problems exist. This should
involve resetting the counters at the start of the monitoring interval.

Attention: The same considerations as discussed for PCKCACHESZ also
apply to CATALOGCACHE_SZ.

Attention: In DB2 II environments with no local table access, the following list
of database manager and database configuration parameters are unlikely to
impact DB2 Information Integrator performance. However, federated
environments with local data access need to be tuned effectively for superior
performance, and the following parameters are part of the tuning knobs
available to achieve this end.

 Chapter 4. Performance problem determination scenarios 135

– logbufsz
– num_iocleaners
– num_ioservers

� Registry and environment variables

– DB2_PARALLEL_IO
– DB2MEMDISCLAIM
– DB2MEMMAXFREE
– DB2NTMEMSIZE
– DB2_PINNED_BP

4.2.3 Federated server or remote data source
Determining whether the resources consumed for a query is predominantly in the
federated server, or at the remote data source, or somewhat equally distributed
between them requires reviewing the query in the dynamic SQL snapshot output
and EXPLAIN output of the query.

Example 4-8 is an example of snapshot output using the get snapshot for
dynamic sql ... command, in which some of the key fields are highlighted.
Example 4-9 on page 138 shows db2exfmt output for the SQL query shown in
Example 4-8.

Example 4-8 Dynamic SQL snapshot

$db2 get snapshot for dynamic sql on fedserv
Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/kawa/kawa/NODE0000/SQL00001/

 Number of executions = 374
 Number of compilations = 1
 Worst preparation time (ms) = 77
 Best preparation time (ms) = 77
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 3578
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 374
 Statement sort overflows = 0
 Total sort time = 322696
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0

136 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 16984.947355
 Total user cpu time (sec.ms) = 2009.080000
 Total system cpu time (sec.ms) = 85.490000
 Statement text = SELECT O_ORDERPRIORITY,
COUNT(*) AS ORDER_COUNT FROM ORA.ORDERS WHERE O_ORDERKEY
BETWEEN 1 AND 1000000 AND EXISTS (SELECT * FROM
DB2.LINEITEM WHERE L_ORDERKEY = O_ORDERKEY
AND L_COMMITDATE < L_RECEIPTDATE) GROUP BY
O_ORDERPRIORITY ORDER BY O_ORDERPRIORITY

...............lines have been removed..............................

 Number of executions = 374
 Number of compilations = 374
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 236474590
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 13144.507706
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."L_ORDERKEY" FROM
"TPCD"."LINEITEM" A0 WHERE (A0."L_COMMITDATE" < A0."L_RECEIPTDATE") AND
(A0."L_ORDERKEY" <= 1000000) AND (1 <= A0."L_ORDERKEY") ORDER BY 1 ASC,
A0."L_COMMITDATE" ASC, A0."L_RECEIPTDATE" ASC FOR READ ONLY

...............lines have been removed..............................

 Number of executions = 374
 Number of compilations = 374
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0

 Chapter 4. Performance problem determination scenarios 137

 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 93500000
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 2724.553063
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."O_ORDERKEY",
A0."O_ORDERPRIORITY", A0.ROWID FROM "IITEST"."ORDERS" A0 WHERE (1 <=
A0."O_ORDERKEY") AND (A0."O_ORDERKEY" <= 1000000) ORDER BY 1 ASC

Example 4-8 on page 136 shows the user-entered SQL statement as well as two
remote SQL fragments, which tends to look like “SELECT
A?.”colname”....FROM...”.

In order to determine the relationship between a user-entered SQL statement
and the remote SQL fragments associated with it, you need to EXPLAIN the
user-entered query and determine the remote SQL fragment(s) text identified in
the RMTQTXT field of the SHIP operator (6 and 10), as shown in Example 4-9.

Example 4-9 Sample db2exfmt output with a SHIP operator and RMTQTXT field

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM

Attention: In practice there will be many user-entered SQL as well as remote
SQL fragments listed in the output of the dynamic SQL snapshot command.

However, there is no direct mechanism to link the remote SQL fragments in
the dynamic cache with their corresponding user SQL statement.

Important: The remote SQL fragment text in the RMTQTXT field of the SHIP
operator of db2exfmt output contains the names of the remote data source
tables/views, and not the nicknames referencing these remote objects in the
use query.

138 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: TOOL1E00
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-07-02-19.24.26.071589
EXPLAIN_REQUESTER: KAWA

Database Context:

Parallelism: None
CPU Speed: 4.723442e-07
Comm Speed: 100
Buffer Pool size: 78000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 1 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER_COUNT
FROM ORA.ORDERS
WHERE O_ORDERKEY BETWEEN 1 AND 1000000 AND EXISTS
 (SELECT *

 Chapter 4. Performance problem determination scenarios 139

 FROM DB2.LINEITEM
 WHERE L_ORDERKEY = O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE)
GROUP BY O_ORDERPRIORITY
ORDER BY O_ORDERPRIORITY

Optimized Statement:

SELECT Q4.$C0 AS "O_ORDERPRIORITY", Q4.$C1 AS "ORDER_COUNT"
FROM
 (SELECT Q3.$C0, COUNT(*)
 FROM
 (SELECT DISTINCT Q2.O_ORDERPRIORITY, Q2.$P-ROWID$
 FROM DB2.LINEITEM AS Q1, ORA.ORDERS AS Q2
 WHERE (Q1.L_ORDERKEY = Q2.O_ORDERKEY) AND (Q1.L_COMMITDATE <
 Q1.L_RECEIPTDATE) AND (Q2.O_ORDERKEY <= 1000000) AND (1 <=
 Q2.O_ORDERKEY)) AS Q3
 GROUP BY Q3.$C0) AS Q4
ORDER BY Q4.$C0

Access Plan:

Total Cost: 222926
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 5
 GRPBY
 (2)
 222926
 16810.7
 |
 250002
 TBSCAN
 (3)
 222896
 16810.7
 |
 250002
 SORT
 (4)
 222762
 16810.7
 |

140 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 250002
 MSJOIN
 (5)
 222162
 16810.7
 /---+---\
 250002 1.99876
 SHIP FILTER
 (6) (9)
 37714.3 184277
 9486.34 7324.35
 | |
 1.5e+07 499694
 NICKNM: ORA SHIP
 ORDERS (10)
 184277
 7324.35
 |
 5.99861e+07
 NICKNM: DB2
 LINEITEM

1) RETURN: (Return Result)
Cumulative Total Cost: 222926
Cumulative CPU Cost: 4.89221e+09
Cumulative I/O Cost: 16810.7
Cumulative Re-Total Cost: 222327
Cumulative Re-CPU Cost: 3.62365e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 222794
Estimated Bufferpool Buffers: 0
Remote communication cost:397356

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

9) From Operator #2

 Chapter 4. Performance problem determination scenarios 141

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q5.O_ORDERPRIORITY(A)+Q5.ORDER_COUNT

2) GRPBY : (Group By)
Cumulative Total Cost: 222926
Cumulative CPU Cost: 4.89221e+09
Cumulative I/O Cost: 16810.7
Cumulative Re-Total Cost: 222327
Cumulative Re-CPU Cost: 3.62364e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 222794
Estimated Bufferpool Buffers: 0
Remote communication cost:397356

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

TRUE
GROUPBYN: (Number of Group By columns)

1
GROUPBYR: (Group By requirement)

1: Q3.O_ORDERPRIORITY
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

8) From Operator #3

Estimated number of rows: 250002
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_ORDERPRIORITY(A)

Output Streams:

9) To Operator #1

142 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q5.O_ORDERPRIORITY(A)+Q5.ORDER_COUNT

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 222896
Cumulative CPU Cost: 4.82971e+09
Cumulative I/O Cost: 16810.7
Cumulative Re-Total Cost: 222297
Cumulative Re-CPU Cost: 3.56114e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 222762
Estimated Bufferpool Buffers: 0
Remote communication cost:397356

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

7) From Operator #4

Estimated number of rows: 250002
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERPRIORITY(A)+Q2.RID(A)
+Q2.$P-ROWID$(A)

Output Streams:

8) To Operator #2

Estimated number of rows: 250002

 Chapter 4. Performance problem determination scenarios 143

Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_ORDERPRIORITY(A)

4) SORT : (Sort)
Cumulative Total Cost: 222762
Cumulative CPU Cost: 4.54445e+09
Cumulative I/O Cost: 16810.7
Cumulative Re-Total Cost: 222162
Cumulative Re-CPU Cost: 3.27589e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 222762
Estimated Bufferpool Buffers: 16811.9
Remote communication cost:397356

Arguments:

DUPLWARN: (Duplicates Warning flag)

TRUE
NUMROWS : (Estimated number of rows)

250002
ROWWIDTH: (Estimated width of rows)

44
SORTKEY : (Sort Key column)

1: Q2.O_ORDERPRIORITY(A)
SORTKEY : (Sort Key column)

2: Q2.RID(A)
SORTKEY : (Sort Key column)

3: Q2.$P-ROWID$(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

TRUE

Input Streams:

6) From Operator #5

Estimated number of rows: 250002
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY+Q2.RID+Q2.$P-ROWID$

144 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q2.O_ORDERPRIORITY+Q2.O_ORDERKEY

Output Streams:

7) To Operator #3

Estimated number of rows: 250002
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERPRIORITY(A)+Q2.RID(A)
+Q2.$P-ROWID$(A)

5) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 222162
Cumulative CPU Cost: 3.27589e+09
Cumulative I/O Cost: 16810.7
Cumulative Re-Total Cost: 222162
Cumulative Re-CPU Cost: 3.27589e+09
Cumulative Re-I/O Cost: 16810.7
Cumulative First Row Cost: 165.969
Estimated Bufferpool Buffers: 16811.9
Remote communication cost:397356

Arguments:

EARLYOUT: (Early Out flag)

LEFT
INNERCOL: (Inner Order Columns)

1: Q1.L_ORDERKEY(A)
OUTERCOL: (Outer Order columns)

1: Q2.O_ORDERKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

5) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 3.99997e-06

Predicate Text:

(Q1.L_ORDERKEY = Q2.O_ORDERKEY)

 Chapter 4. Performance problem determination scenarios 145

Input Streams:

2) From Operator #6

Estimated number of rows: 250002
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY(A)+Q2.RID+Q2.$P-ROWID$
+Q2.O_ORDERPRIORITY

5) From Operator #9

Estimated number of rows: 1.99876
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMITDATE(A)
+Q1.L_RECEIPTDATE(A)

Output Streams:

6) To Operator #4

Estimated number of rows: 250002
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY+Q2.RID+Q2.$P-ROWID$
+Q2.O_ORDERPRIORITY+Q2.O_ORDERKEY

6) SHIP : (Ship)
Cumulative Total Cost: 37714.3
Cumulative CPU Cost: 4.40279e+08
Cumulative I/O Cost: 9486.34
Cumulative Re-Total Cost: 168.177
Cumulative Re-CPU Cost: 3.56048e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 100.032

146 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated Bufferpool Buffers: 9486.51
Remote communication cost:139105

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."O_ORDERKEY", A0."O_ORDERPRIORITY", A0.ROWID FROM
"IITEST"."ORDERS" A0 WHERE (1 <= A0."O_ORDERKEY") AND (A0."O_ORDERKEY" <=
1000000) ORDER BY 1 ASC

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object ORA.ORDERS

Estimated number of rows: 1.5e+07
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID

Output Streams:

2) To Operator #5

Estimated number of rows: 250002
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY(A)+Q2.RID+Q2.$P-ROWID$
+Q2.O_ORDERPRIORITY

9) FILTER: (Filter)
Cumulative Total Cost: 184277

 Chapter 4. Performance problem determination scenarios 147

Cumulative CPU Cost: 2.47251e+09
Cumulative I/O Cost: 7324.35
Cumulative Re-Total Cost: 253.012
Cumulative Re-CPU Cost: 5.35653e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 65.049
Estimated Bufferpool Buffers: 7325.35
Remote communication cost:258251

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

5) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 3.99997e-06

Predicate Text:

(Q1.L_ORDERKEY = Q2.O_ORDERKEY)

Input Streams:

4) From Operator #10

Estimated number of rows: 499694
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMITDATE(A)
+Q1.L_RECEIPTDATE(A)

Output Streams:

5) To Operator #5

Estimated number of rows: 1.99876
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

148 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q1.L_ORDERKEY(A)+Q1.L_COMMITDATE(A)
+Q1.L_RECEIPTDATE(A)

10) SHIP : (Ship)
Cumulative Total Cost: 184277
Cumulative CPU Cost: 2.47251e+09
Cumulative I/O Cost: 7324.35
Cumulative Re-Total Cost: 253.012
Cumulative Re-CPU Cost: 5.35653e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 65.049
Estimated Bufferpool Buffers: 7325.35
Remote communication cost:258251

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."L_ORDERKEY" FROM "TPCD"."LINEITEM" A0 WHERE
(A0."L_COMMITDATE" < A0."L_RECEIPTDATE") AND (A0."L_ORDERKEY" <= 1000000) AND
(1 <= A0."L_ORDERKEY") ORDER BY 1 ASC, A0."L_COMMITDATE" ASC,
A0."L_RECEIPTDATE" ASC FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

3) From Object DB2.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.L_RECEIPTDATE+Q1.L_COMMITDATE
+Q1.L_ORDERKEY

Output Streams:

4) To Operator #9

 Chapter 4. Performance problem determination scenarios 149

Estimated number of rows: 499694
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMITDATE(A)
+Q1.L_RECEIPTDATE(A)

Objects Used in Access Plan:

Schema: DB2
Name: LINEITEM
Type: Nickname

Time of creation: 2004-06-11-21.33.19.482113
Last statistics update: 2004-06-11-22.38.00.532171
Number of columns: 16
Number of rows: 59986052
Width of rows: 133
Number of buffer pool pages: 2081039
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: ORDERS
Type: Nickname

Time of creation: 2004-06-11-21.33.10.349783
Last statistics update: 2004-06-11-22.32.45.545670
Number of columns: 9
Number of rows: 15000000
Width of rows: 49
Number of buffer pool pages: 443840
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

150 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

The SQL text in the RMTQTXT field of SHIP operators 6 and 10 can then be
used to find matches in the dynamic cache, as highlighted in Example 4-8 on
page 136.

The key fields of interest in the dynamic cache output of Example 4-8 on
page 136 for the user-entered query and the two remote SQL fragments are as
follows:

1. Number of executions, which is 374 for the user-entered query as well as
the two remote SQL fragments.

2. Total execution time (sec.ms), which is 16984.947355 for the user-entered
query, and 13144.507706 and 2724.553063 for the two remote SQL
fragments respectively.

3. Total user cpu time (sec.ms) and Total system cpu time (sec.ms), which
is 2009.080000 and 85.490000 for the user entered query, while it is zero for
both the remote SQL fragments.

4. Rows read is 3578 for the user-entered query, which is the number of rows
returned to the user; while 236474590 and 93500000 respectively for each of
the remote SQL fragments, which indicates the number of rows returned to
the federated source from each corresponding data source respectively.

5. Other fields of interest include Statement sorts, Statement sort overflows,
and Total sort time, which only apply to the user-entered query, and have
values 374, zero, and 322696 respectively.

We can derive the following information from these metrics:

� The average number of rows returned from each data source to the federated
server is (236474590 / 374) 632285 rows and (93500000 / 374) 250000 rows,
respectively.

� The average elapsed time for the user query is (16984.94 / 374) = 45.41
seconds, while that of each remote SQL fragment is (13144.50 / 374) = 35.15
seconds and (2724.55 / 374) = 7.28 seconds.

Since the access to the remote data sources occur serially, the total elapsed
time at the remote data sources is (35.15 + 7.28) = 42.43 seconds.

Note: To obtain the average elapsed and CPU times, as well as the number of
rows returned, you must divide the values shown by the Number of
executions.

 Chapter 4. Performance problem determination scenarios 151

4.2.4 Federated server related
As mentioned earlier, a number of potential causes of poor performance need to
be investigated when the problem appears to be federated server related. While
there is no hard and fast rule about the sequence in which the following items
need to be investigated, current experience suggests the sequence documented
to be most effective.

1. Statistics
2. Index information
3. Pushdown
4. Joins
5. Parallelism

Each of these items is discussed in detail in the following subsections.

Statistics
Current and accurate statistics about nickname objects are critical to the DB2
optimizer choosing an optimal access path for a federated query. Statistics are
collected at nickname creation, and when the NNSTAT stored procedure or
Statistics Update is invoked from the DB2 Control Center, as shown in Figure 4-4
on page 153.

Attention: In our example, given that the total query elapsed time is 45.41
seconds, it is clear that the predominant elapsed time of the query is spent at
the remote data sources. ((42.43 / 45.41) x 100) = 93.44% of the query
elapsed time is accounted for at the remote data sources, indicating them to
be the potential source of the performance problem. In fact, the major portion
of the elapsed time is at the remote SQL fragment accessing the DB2
LINEITEM table.

Note: This sequence may not be the most effective sequence in your
environment, and you are encouraged to adopt one based on personal
experience.

152 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 4-4 Statistics Update in DB2 Control Center

In Figure 4-4 the federated server retrieves the statistics for the nickname
REGION_STATS, and writes the log to the region_cc_stats.log file.

c:\region_CC_stats.log

 Chapter 4. Performance problem determination scenarios 153

To determine whether there is a possible discrepancy in the statistics between
the federated server and the remote data source, the contents of the dynamic
cache and the corresponding EXPLAIN output may provide some clue.

In Example 4-8 on page 136, the (Rows read / Number of executions)
computation field shows a particular query returning an average of 632285 rows
from the DB2 LINEITEM table, while an average of 250000 rows are returned
from the Oracle ORDERS table.

The Access plan graph in the db2exfmt output for the same query (Example 4-9
on page 138) shows the nickname ORDERS (SHIP operator 6) having a
cardinality of 1.5e+07 rows, while the nickname LINEITEM (SHIP operator 10)
has a cardinality of 5.99861e+07 rows. Additionally, the SHIP operator 6 shows
an estimate of 250002 rows being returned to the federated server from the
Oracle data source, while 499694 rows are estimated to be returned from the
DB2 data source according to the SHIP operator 10.

The discrepancy between the actual rows and the estimated rows returned from
the Oracle data source is (250000 - 250002) = 2 rows, which is pretty accurate.
The discrepancy between the actual rows and the estimated rows returned from
the DB2 data source is (632285 - 499694) = 133691 rows, which may be
significant. This discrepancy between the optimizer's estimate of number of rows

Attention: These statistics are retrieved from the remote data source catalog,
and do not necessarily reflect the actual data in a table. For example, the
REGION_STATS table at the remote data source may actually contain 10
million rows, while the remote data source catalog shows 5 million rows since
statistics had not been gathered of late on the REGION_STATS table at the
remote data source. The Statistics Update facility will reflect 5 million rows at
the federated source, and not the 10 million rows that actually exist in the
remote table.

Also, column value distribution statistics are important for helping the
optimizer estimate the cost of alternative access plans and picking the access
plan that has the best chance of fastest execution times. The optimizer
estimates the number of rows that will result from joins and filters using both
the CARD value in SYSCAT.TABLES for the nicknames involved and also the
value distribution statistics for the nickname columns involved in
SYSCAT.COLUMNS and SYSCAT.INDEXES. COLCARD values for the
relevant nickname columns in SYSSTAT.COLUMNS help the optimizer to
estimate the cost more precisely than if just the CARD value was available in
SYSSTAT.TABLES. HIGH2KEY/LOW2KEY values in SYSSTAT.COLUMNS
and FULLKEYCARD/FIRSTKEYCARD in SYSSTAT.INDEXES help the
optimizer be more precise in its cost estimates.

154 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

returned and the actual number of rows that are returned may be attributed to the
following causes:

� The nickname statistics, including the column value distribution statistics, are
not accurate. This results in the optimizer estimating the size of intermediate
result sets and size of the final results sets on inaccurate information, before
even accounting for anomalies in the data as described next.

� The actual values in the columns of the data are not evenly distributed across
all the rows. The optimizer assumes uniform distribution of values in the
column statistics for the nickname across all the records. The classic example
of this is the product key values for milk products in a supermarket data
warehouse. The different product key values for milk products are a small
percentage of the total number of different key values in the transaction
tables, but they constitute a disproportionately high percentage of the
transaction records since most people buy milk when they go to the market.

A significant difference is reason to consider running the stored procedure
NNSTAT or the Statistics Update facility on the nickname corresponding to the
DB2 data source, which in this case is the LINEITEM nickname.

“Nickname statistics and index information” on page 69 describes the
considerations when using the Statistics Update facility or the NNSTAT stored
procedure.

Index information
Having index information on nicknames is essential to providing the DB2
optimizer with additional information in order for the DB2 optimizer to choose an
optimal access path for a federated query.

As in the case of statistics, index information on nicknames is also collected at
nickname creation.

The updateable view SYSSTAT.INDEXES can be used to add FULLKEYCARD
and FIRSTKEYCARD after an INDEX…SPECIFICATION ONLY record has been

Note: As mentioned earlier, since the Statistics Update facility or NNSTAT
stored procedure only copies the remote data source catalog contents onto
the nickname statistics, there is no guarantee that the nickname statistics will
be accurate.

It is strongly recommended that the remote data source statistics be updated
first before executing the Statistics Update facility or the NNSTAT stored
procedure.

 Chapter 4. Performance problem determination scenarios 155

added to the catalog to provide index/column distribution statistics for the
optimizer.

“Nickname statistics and index information” on page 69 describes the
considerations when synchronizing index information using the Statistics Update
facility or the NNSTAT stored procedure.

Pushdown
It is generally desirable for predicates to be pushed down to the remote data
source as much as possible to reduce the number of rows returned to the
federated server for additional processing before returning results back to the
user.

Some of the predicates cannot be pushed down to the remote data source and
have to be processed at the federated server for reasons such as the
unavailability of the required functionality at the remote data source, and the
setting of the DB2 II server option PUSHDOWN = ‘N’. Other predicates are
candidates for being pushed down, but may not be, depending upon DB2 II
server options such as DB2_MAXIMAL_PUSHDOWN and DB2 optimizer cost
evaluations. Refer to “Pushdown” on page 78 for a detailed discussion of the
pushdown concept.

Identifying non-pushdownable predicates
Assuming that the DB2 II server option PUSHDOWN is set to ‘Y’ (default),
predicates that cannot be pushed down can be identified by setting the
DB2_MAXIMAL_PUSHDOWN server option to ‘Y’, and viewing all operators
above the SHIP operator(s) in db2exfmt output as being non-pushdownable, as
shown in Example B-13 on page 586.

The non-pushdownable predicates in Example B-13 on page 586 are five SHIP
operators (7, 18, 25, 29, and 31) in the db2exfmt output, and all operators above
them are considered non-pushdownable operators such as NLJOIN (2, 5, and 6),
MSJOIN (15), TBSCAN (3, 16 and 23), SORT (4, 17 and 24), GRPBY (14), and
FILTER (13 and 22).

Identifying pushdownable predicates that were not pushed down
Assuming that the DB2 II server option PUSHDOWN is set to ‘Y’ (default),
predicates that are pushdownable but were not for a given query can be
identified by comparing operators above the SHIP operators in the db2exfmt
output of DB2_MAXIMAL_PUSHDOWN = ‘Y’, as shown in Example B-13 on
page 586, with the db2exfmt output of DB2_MAXIMAL_PUSHDOWN = ‘N’, as
shown in Example B-12 on page 554.

The predicates that were not pushed down in Example B-12 on page 554 are six
SHIP operators (8, 17, 24, 28, 31 and 33) in the db2exfmt output, and all

156 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

operators above them were either non-pushdownable or pushdownable but not
pushed down for cost reasons. The list of operators not pushed down are
NLJOIN (2, 5, 6, and 7), MSJOIN (14), TBSCAN (3, 15, and 22), SORT (4, 16,
and 23), GRPBY (13), and FILTER (12 and 21).

Comparing the db2exfmt outputs in Example B-13 on page 586 and
Example B-12 on page 554, we can identify that the difference is in the number
of SHIP operators and NLJOIN operators.

� Example B-13 on page 586 with the DB2_MAXIMAL_PUSHDOWN = ‘Y’
option has one fewer SHIP operator since it pushes a 3-way join of the
nicknames SUPPLIER, PART, and PARTSUPP via SHIP operator 7, thereby
resulting in one fewer nested loop join.

With DB2_MAXIMAL_PUSHDOWN 'Y' we can see which joins and filters DB2
II's PDA determines cannot be pushed down. If we compare the SQL
statement with the access plan we see that:

– Though PARTSUPP and SUPPLIER are referenced in both the main
select at the top of the statement and in the sub-select near the bottom of
the statement, DB2 II cannot send just one SQL statement to the data
source 'DB2' for both of these select clauses. It is evident that the minimal
number of SHIPs to data source 'DB2' is two—one for the join of PART,
PARTSUPP, and SUPPLIER in the main select, and another for the join of
PARTSUPP and SUPPLIER in the sub-select.

– The reason for this restriction is that SUPPLIER is joined to a NATION at
'ORA' in both the main select and the sub-select.

– For a similar possible reason, DB2 II cannot perform just one access to
'ORA' to get data from NATION and REGION for use in the main select
and the sub-select.

� Example B-12 on page 554 with the DB2_MAXIMAL_PUSHDOWN = ‘N’
option has an additional SHIP operator since it chooses to join nicknames
PART and PARTSUPP via the SHIP operator 8, the result of which is then
joined (NLJOIN operator 7) with the results of the FILTER operator 12. The
results of NLJOIN operator 7 is then joined with the results of SHIP operator
28 that accesses SUPPLIER.

The Total cost of 696494 timerons for Example B-12 on page 554 with
DB2_MAXIMAL_PUSHDOWN = ‘N’ is estimated by the DB2 optimizer to be

Note: An alternative approach to identifying predicates not pushed down is to
look at the SQL in the RMTQTXT field of the SHIP operator in conjunction with
the SQL in the Optimized Statement section of db2exfmt output. Bear in mind
that the Optimized Statement does not always identify the SQL statement
used in access path selection.

 Chapter 4. Performance problem determination scenarios 157

lower than the Total cost of 712543 timerons for Example B-13 on page 586 with
DB2-MAXIMAL_PUSHDOWN = ‘Y’. This clearly demonstrates the functionality of
the DB2_MAXIMAL_PUSHDOWN server option and the reason why the default
setting is ‘N’.

Joins
DB2 supports three potential join strategies: nested loop, merge scan and hash
joins. Each of these join methods is optimal under certain conditions.

Table 4-2 provides a very high-level overview of conditions under which one of
the three join strategies is favored over the other. It is not a comprehensive list.
Refer to the IBM DB2 UDB Administration Guide: Performance, SC09-4821-00,
for a detailed discussion of these join methods and join strategies.

Table 4-2 Join strategies

Attention: In the final analysis, what really matters is not what the DB2
optimizer estimates to be the optimal access path based on timerons, but the
actual run times experienced by the user. This requires accurate
measurements in a representative runtime environment.

Criteria Nested loop join Merge scan or Hash join

Only limited memory
available

Better Worse, since memory is
needed for sorting or
building the hash table.

Need the first row quickly Better Worse, since a sort or hash
is needed before a row can
be returned.

Selecting only a few rows
from the inner table

Better Worse.

Parallelism Best Okay.

Index available on inner
table

Best Okay.

No equality predicates Okay Requires at least one
equality predicate.
For hash join, the data
type, scale and precision
must match perfectly.

Very large numbers of
qualifying rows for each
input to the join

Worse Not much better.
Hash and sort will almost
have equal costs.

158 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

When a federated query joins nicknames from different data sources, the join
occurs at the federated server and can consume sort heap and buffer pool
resources depending upon the join strategy adopted by the DB2 optimizer. Both
the hash join (HSJOIN) and merge scan join (MSJOIN) techniques use memory.
In the case of the hash join, DB2 II creates a hash table using an allocation from
SORTHEAP. Merge scan also uses SORTHEAP allocation.

db2exfmt output identifies the type of join chosen (NLJOIN, MSJOIN and
HSJOIN operators), the predicates involved, and estimates the number of rows in
the input to the join. Sometimes, if the join input is from SHIP operators, the
content of the dynamic cache (Rows read field) can provide actual number of
rows input to the join rather than optimizer estimates. This information is critical
to evaluating whether or not the choice of a particular join method may be the
most optimal for a given query.

In Example B-12 on page 554, the nested loop join (NLJOIN operator 7)
estimates 36042.4 rows from the SHIP operator 8 (outer table) being joined with
an estimated 1.16257e-05 rows returned from the FILTER operator 12 (inner
table). The predicates involved in the join are identified in the Predicate Text of
the NLJOIN operator 7 as being Q9.PS_SUPPLYCOST = Q6.$C0.

This information about the number of rows input to the join, the predicates
involved, and configuration information (sort heap and buffer pool) can be used in
conjunction with the join strategies information shown in Table 4-2 on page 158
to assess whether the join method chosen by the DB2 optimizer is appropriate
for the given query.

Here again, in the final analysis, what really matters is not what the DB2
optimizer estimates to be the optimal access path based on timerons, but the
actual run times experienced by the user. This requires accurate measurements
in a representative runtime environment.

One very small input and
one very large input to the
join

Worse Hash join better than
merge.

Criteria Nested loop join Merge scan or Hash join

 Chapter 4. Performance problem determination scenarios 159

Parallelism
Intra-partition and inter-partition parallelism are supported by DB2 II, as
described in “DB2 server parallelism” on page 74 and “DB2 II wrapper
DB2_FENCED option” on page 62.

The following settings influence the DB2 optimizer in considering the choice of
intra-partition and inter-partition parallelism:

� Database manager configuration parameter INTRA_PARALLEL, which must
be set to YES (default is NO) for intra-partition parallelism.

� For intra-partition parallelism, the database configuration parameter
DFT_DEGREE must be set to ANY(-1) or > 1 (default is 1). This sets the
default value of the CURRENT DEGREE special register and the DEGREE
bind option.

� Database partition feature (DPF) for inter-partition parallelism is installed and
configured.

� DB2 II wrapper option DB2_FENCED = ‘Y’ (default is ‘N’) for inter-partition
parallelism.

� Computation partition group (CPG) for inter-partition parallelism even when
no local data is involved in the federated query.

db2exfmt output provides information about the enabling of parallelism
(Parallelism field in the Database Context section), while the Access Plan
section indicates through the presence of operators BTQ, DTQ, LTQ, LMTQ,
MBTQ and MDTQ whether parallelism (intra and/or inter) was chosen for
portions of the access plan. These operators are briefly described in Table B-3
on page 446.

Example B-9 on page 490 shows db2exfmt output for a query with intra-partition
parallelism enabled as indicated by the value Intra-Partition Parallelism in the

Attention: For federated queries that join nicknames from different data
sources, the likelihood of data type mismatches between the joined columns is
higher because of the default data type mapping that occurs when the
nicknames are defined. Such a mismatch would inhibit the choice of the hash
join method on that predicate, which would otherwise have been the optimal
join method for the given query.

Another consideration is that the quality of the statistics gathered for a
nickname may result in less accurate estimation of rows returned from a data
source (for example, when distribution statistics are not available for a
particular data source), thereby causing a less optimal join method to be
chosen.

160 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Parallelism field of the Database Context section. The access plan graph shows
the presence of the LMTQ operator 4, which indicates intra-partition parallelism
being chosen.

Example B-11 on page 534 shows db2exfmt output for a query with inter-partition
parallelism enabled as indicated by the value Inter-Partition Parallelism in the
Parallelism field of the Database Context section. The access plan graph shows
the presence of the DTQ operator 2 and the BTQ operator 4, which indicates
inter-partition parallelism being chosen. Intra-partition parallelism had not been
enabled in Example B-11 on page 534.

The Parallelism field in the Database Context section of the db2exfmt output will
indicate the type of parallelism enabled, if any; while the presence/absence of
table queue operators in the access plan graph of the db2exfmt output will
indicate whether the DB2 optimizer chose parallelism for the access plan.
db2exfmt output also provides estimates of rows returned by each operator.
Dynamic cache metrics (Rows read field), if appropriate, provide the actual
number of rows returned, which is a more refined approach to assess whether
parallelism should be enabled for the given query.

Here again, in the final analysis, what really matters is not what the DB2
optimizer estimates to be the optimal access path based on timerons, but the
actual run times experienced by the user. This requires accurate measurements
in a representative runtime environment.

4.2.5 Remote data source related
The remote data sources may be autonomously managed environments, in
which case it is up to the remote administrator to apply appropriate tuning
strategies after being given details of the remote SQL fragment such as the text
of the SQL statement, elapsed time, and number of rows returned to the
federated server as obtained from the dynamic cache.

Note: Intra-partition parallelism should be considered in federated
environments only when local DB2 data is present in the federated database
and when there are sufficient spare CPU cycles to cope with the increased
CPU utilization. Intra-partition parallelism can occur with nicknames defined
using both the fenced and trusted wrappers. A federated server should only be
placed on a partitioned database server when the existing DB2 database is
already partitioned. One should not consider partitioning a federated server
that does not contain local DB2 data of sufficient volumes to warrant
partitioning. For nicknames to take advantage of inter-partition parallelism,
they must be defined using the fenced wrapper.

 Chapter 4. Performance problem determination scenarios 161

When the remote data source is a relational database, we need to investigate the
number of rows returned to the federated server, the degree of pushdown of the
predicates in the user-entered query to determine if any of the DB2 II
configuration options (related to DB2 database manager, DB2 II server, or DB2 II
nickname columns) need review, or whether the query syntax itself is inhibiting
pushdown. The same procedures as discussed in 4.2.4, “Federated server
related” on page 152, apply here. A performance problem can be isolated to a
particular data source by either reviewing snapshot monitor information, or by
natively executing the SQL fragment, which is pushed down to the remote data
source using the data sources client. If a problem is suspected at the remote
data source, then the federated server DBA and the DBA for the remote data
source should work together to isolate the cause of the problem.

4.3 Monitoring best practices
DB2 provides a number of monitoring capabilities for problem diagnosis as well
as tuning the performance of the system.

The information collected by the snapshot monitor1 of the Database System
Monitor in particular is controlled by a set of monitor switches defined in the
database manager configuration file. these switches and their default settings
are described in Table 4-3.

Table 4-3 Snapshot monitor switches

1 The snapshot monitor is used to capture information about the database and any connected
applications at a specific time. Snapshots are useful for determining the status of a database system.
Taken at regular intervals, they are also useful for observing trends and foreseeing potential
problems.

Attention: There is a considerable amount of basic monitoring data that is not
under monitor switch control, and will always be collected regardless of switch
settings. Figure 4-5 shows the monitoring data collected in relation to monitor
switch settings.

Monitor switch Default Description

DFT_MON_BUFPOOL OFF Buffer pool activity information such as number
of reads and writes, and time taken

DFT_MON_LOCK OFF Lock wait times and deadlock-related
information

DFT_MON_SORT OFF Sorting information such as number of heaps
used and sort performance

162 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 4-5 DB2 snapshot monitor syntax and data collection

DFT_MON_STMT OFF SQL statement information such as start/stop
time, and statement identification

DFT_MON_TABLE OFF Table activity information such as rows read
and written

DFT_MON_TIMESTAM
P

ON Times and timestamp information

DFT_MON_UOW OFF Unit of work information such as start/end times
and completion status

Monitor switch Default Description

P A
database A S P P A A A A

all applications A S P P A S A A A
bufferpools S

all A A S P P A S A A A A A P
database A S P P A A A A

bufferpools S
applications on A S P P A S A A A A

tables <database>

tablespaces A S
locks P S A

dynamic sql P

DB2 Snapshot Monitors

g
e
t

s
n
a
p
s
h
o
t

f
o
r

Tables

Tablespaces

M
em

ory pools

Bufferpool &
 I/O

Lock sum
m

ary

Lock detail

Sorts

Agents

C
PU

 utilization

Row
s

read/selected

Pkg/Sect/C
at

cache

Application state

SQ
L stm

t activity
Sel/ins/upd/del

Log usage

D
ynam

ic SQ
L

..and
some pretty
useful

things

database manager

...how to
get it

What you can get...

A - always collected S - collected only when monitor switch is ON
P - collected when switch is on, partially collected when switch is off

 Chapter 4. Performance problem determination scenarios 163

Refer to the IBM DB2 UDB System Monitor Guide and Reference, SC09-4847,
for more information on the monitor switches, including setting them, taking
snapshots, and other general considerations.

4.3.1 Performance considerations
There are overheads associated with collecting the Database System Monitor.
This includes collecting the data when the monitor switches are set, as well as
the processing cost of frequently retrieving this information via the get
snapshot and flush event monitor commands.

Each monitor switch setting imposes a certain overhead that is dependent upon
the nature of the workload. The overheads are predominantly related to CPU
consumption rather than waits due to concurrency issues.

Typical overheads are as follows:

� All switches set: Approximately 5–10 percent, but will vary depending upon
the workload.

� The DFT_MON_LOCK setting imposes an overhead of between 1–3 percent
depending upon the frequency of snapshot requests.

� The DFT_MON_STMT setting with dynamic SQL workloads imposes an
overhead of between 5–10 percent proportional to statement throughput. The
timestamp switch setting needs to be considered in the overhead
experienced.

� The DFT_MON_TIMESTAMP setting (default is ON) overhead can become
significant when CPU utilization approaches 100 percent. When this setting is
ON, the database manager issues timestamp operating system calls when
determining time or timestamp-related monitor elements. When this setting is
OFF, the overhead of other switch settings is greatly reduced.

Note: Event Monitorsa are not affected by monitor switches in the same way
as snapshot monitoring applications. When an event monitor switch is defined,
it automatically turns on the instance-level monitor switches required by the
specific event types.

a. Event monitor differs from the snapshot monitor in that it is used to collect in-
formation about the database and any connected applications when specified
events occur. Events represent transitions in database activity, for instance, con-
nections, deadlocks, statements, and transactions. Event monitor does not pro-
vide added value for federated queries.

164 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

4.3.2 Best practices
We recommend the following best practices for the different types of monitoring.

Routine monitoring
As discussed in 2.3.1, “Routine monitoring” on page 35, the objectives of this
type of monitoring are to collect information about the workload and stress on the
system during periods of normal and peak periods for capacity planning
purposes, as well as identifying potential performance problems in the future.

From a problem determination point of view, the objective is to detect
deteriorating trends of key performance drives, and then perform exception
monitoring to pinpoint the problem and resolve it before it gets out of hand.

We recommend the following monitor switch settings, database configuration
settings, and get snapshot command frequency for routine monitoring of a
federated database environment:

� Set all switches to ON except DFT_MON_STMT and DFT_MON_LOCK.

� Federated systems are similar to business intelligence environments (largely
read only), and therefore the frequency of snapshot requests should be low
for lightly loaded systems (say every 300 seconds), and higher for highly
dynamic systems (say every 60 seconds).

� Let DIAGLEVEL2 default to 3.

Important: Since the overhead associated with each monitor switch setting is
completely dependent upon the workload and the frequency of snapshot
requests, you should determine the overheads in your specific environment
through careful measurements. The overheads listed earlier are merely
provided as guidelines to be used prior to detailed measurement in your
environment.

Note: Routine monitoring overhead should typically not exceed 5 percent.

Attention: Routine monitoring requires a history repository to determine
trends, and reporting mechanisms to alert potential problem conditions using
thresholds and alerts.

We did not have such a history repository available, and just asserted the
existence of a particular trend for our problem diagnosis purposes.

2 Specifies the type of diagnostic errors recorded in the db2diag.log.

 Chapter 4. Performance problem determination scenarios 165

� Let the NOTIFYLEVEL3 default to 3.

� Let HEALTH_MON4 default to ON.

Online/event monitoring
As discussed in 2.3.2, “Online/realtime event monitoring” on page 36, the
objective of this type of monitoring is to be on the lookout for specific events that
may either identify a specific problem, or portend problems in the near to
immediate future, in order to take prompt corrective action. Near to immediate
future implies minutes rather than hours.

The key to this type of monitoring is that it involves looking for specific events in a
short interval of time (short history) that are known to degrade performance, and
having the option to take prompt corrective action to rectify the problem. In other
words, there probably needs to be a very short delay between information
collection and a corrective response. One example of such an event is the
invalidation of a nickname, which needs to be addressed promptly to ensure that
business objectives are not being compromised.

Note that online/realtime monitoring is similar to routine monitoring, since its
alerts will enable you to bypass certain validations in the DB2 hypotheses
hierarchy by virtue of the fact that these alerts point to a specific problem area.

The Health Monitor and Health Center are the primary tools for online/realtime
monitoring in DB2.

Exception monitoring
As described in 2.3.3, “Exception monitoring” on page 37, this type of monitoring
is required when you discover or suspect a problem, and need to identify its root
cause in order to apply the appropriate corrective action to fix the problem.

Unlike routine and event monitoring, which are planned occurrences and are
designed to have low overheads on the managed system, exception monitoring

3 Specifies the type of administration notification messages that are written to the administration
notification log.
4 Specifies whether the DB2 instance, its associated databases and database objects should be
monitored using the Health Center’s health indicators.

Attention: These settings should be evaluated in the context of overheads
incurred in your specific environment.

Note: The need to minimize the overhead of online/realtime monitoring is
critical given that most problems manifest themselves at peak loads.

166 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

is driven by problem situations and may impose significant overheads on the
managed system.

4.4 Problem scenarios
In the following sections, we document the procedures we followed for identifying
the following frequently encountered performance problems in a DB2 II
environment using both routine monitoring and exception monitoring:

� Missing or incorrect statistics/index information
� Poorly tuned sort heap and buffer pools
� Missing or unavailable MQTs
� Incompatible data types on join columns
� Pushdown problems
� Default DB2_FENCED wrapper option with DPF

We have organized the discussion of each scenario as follows:

� Triggering event
� Hypotheses and their validation
� Root cause of the problem
� Apply best practices

We used a common test environment for these scenarios, as described in 4.4.1,
“Federated test environment” on page 167.

4.4.1 Federated test environment
Our pseudo production environment for our problem scenarios is shown in
Figure 4-6 on page 168.

Attention: Two important points need to be noted about these scenarios, as
follows:

� The workload and environments were artificially contrived to produce the
relevant problem condition for the problem diagnosis exercise; therefore,
certain settings can clearly be seen to be “inappropriate” in real-world
environments.

� The emphasis of these scenarios is on problem diagnosis, and not on
problem resolution per se. Best practices for problem resolution are
discussed briefly, but not applied to demonstrate the elimination of the
problem.

 Chapter 4. Performance problem determination scenarios 167

Figure 4-6 Federated test environment

The environment consists of:

� DB2 II V8.2 federated server instance on an 8-way 32 GB P650 (Jamesbay)
running AIX 5.2

� Oracle 9i database server on a 4-way 4 GB P630 (Azov) running AIX 5.2

� DB2 ESE V8.2 database server on 2-way 2 GB 44P 270 (Mansel) AIX 5.2

� Microsoft SQl Server 2000 server on a 2-way 4 GB xSeries® 330 (Swiss)
running Windows 2000

Each of the database servers contains identical tables and table names
corresponding to the TPCD benchmark, but were assigned different schema
names as follows:

� DB2 UDB ESE used the schema DB2.

� Oracle used the schema ORA.

Federated Server

Jamesbay

RS/6000 P650
8-way, 32GB

AIX 5.2
DB2 II 8.2

4x140GB disks

TPCD
tables

Federated
Server

Mansel

RS/6000 44P270
2-way, 2GB

AIX 5.2
DB2 UDB ESE 8.1

2x18GB disks

Remote data source

TPCD
tables

Azov

RS/6000 P630
4-way, 4GB

AIX 5.2
Oracle 9i

3x18GB disks

Remote data source

TPCD
tables

Swiss

xSeries 330
2-way, 4GB

Windows 2000
SQL Server

2x18GB disks

Remote data source

TPCD
tables

168 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� SQL Server 2000 used the schema MSS.

� Local tables on DB2 used the schema TPCD. These tables were located in
the same database as the federated server.

Each database contains the eight TPCD tables shown in Figure 4-7, and all have
the same cardinality listed in Table 4-4.

Figure 4-7 TPCD tables

Table 4-4 TPCD tables cardinality

Table name Relationship between
records in different
tables

Number of rows

ORDERS One record per order 1,500,000 orders

LINEITEMS One record per order item 6,000,000 line items

PART One record per part 200,000 parts

SUPPLIER One record per supplier 10,000 suppliers

PART

P_PARTKEY
P_NAME
P_MFGR
P_BRAND
P_TYPE
P_SIZE
P_CONTAINER
P_RETAILPRICE
P_COMMENT

SUPPLIER

S_SUPPKEY
S_NAME
S_ADDRESS
S_NATIONKEY
S_PHONE
S_ACCTBAL
S_COMMENT

PARTSUPP

PS_PARTKEY
PS_SUPPKEY
PS_AVAILQTY
PS_SUPPLYCOST
PS_COMMENT

CUSTOMER

C_CUSTKEY
C_NAME
C_ADDRESS
C_NATIONKEY
C_PHONE
C_ACCTBAL
C_MKTSEGMENT
C_COMMENT

NATION

N_NATIONKEY
N_NAME
N_REGIONKEY
N_COMMENT

LINEITEM

L_ORDERKEY
L_PARTKEY
L_SUPPKEY
L_LINENUMBER
L_QUANTITY
L_EXTENDEDPRICE
L_DISCOUNT
L_TAX
L_RETURNFLAG
L_LINESTATUS
L_SHIPDATE
L_COMMITDATE
L_RECEIPTDATE
L_SHIPINSTRUCT
L_SHIPMODE
L_COMMENT

ORDERS

O_ORDERKEY
O_CUSTKEY
O_ORDERSTATUS
O_TOTALPRICE
O_ORDERDATE
O_ORDERPRIORITY
O_CLERK
O_SHIPPRIORITY
O_COMMENT

REGION

R_REGIONKEY
R_NAME
R_COMMENT

 Chapter 4. Performance problem determination scenarios 169

Nicknames were created at the DB2 II federated server (Jamesbay) for all of the
tables, using the appropriate schema name to identify the intended server. For
example, the nickname MSS.NATION refers to the NATION table on the SQL
Server 2000 database server. This naming convention provided us with the
flexibility to vary the location of the nickname data for our different scenarios
without having to change the SQL statements.

We used the twenty-two TPCD benchmark queries as well as additional
home-grown queries as our application workload. For details about the TPCD
benchmark and its queries, please refer to the Transaction Processing
Performance Council Web site:

http://www.tpc.org/

We had the following monitor-level settings for this environment:

� All switches to ON except DFT_MON_LOCK.
� Frequency of snapshot requests was on demand and varied by scenario
� Let DIAGLEVEL default to 3.
� Let the NOTIFYLEVEL default to 3.
� Let HEALTH_MON default to ON.

4.4.2 Missing or incorrect statistics/index information
As mentioned earlier, statistics and index information is automatically collected
when a nickname is created. However, it is the DBA’s responsibility to ensure that

PARTSUPP One record for each
supplier for a part

CUSTOMER One record per customer 200,000 customers

NATION One record per nation 25 nations

REGION One record per region 5 regions

Note: We had multiple instances on Jamesbay, both 32-bit and 64-bit
instances, which we used as the scenario demanded.

Note: We simulated concurrent user access to our federated test environment
using local home-grown driver scripts and local connections supplying input
via the command line. We did not employ a Web application server.

Table name Relationship between
records in different
tables

Number of rows

170 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

http://www.tpc.org/

this information is kept current as changes occur in objects at the remote data
source. The statistics and index information for a nickname can lose currency
causing the DB2 optimizer to make suboptimal access path decisions for queries
accessing these nicknames.

In this scenario, we show how incorrect statistics for a nickname may be the
cause of a performance problem.

Triggering event
Several user complained about poor response times for their queries. Some
users said that their current queries were experiencing poor response times—the
performance problem was in progress.

Hypotheses and validations
Since there were several user complaints about poor performance, as per
Figure 4-3 on page 122, we decided to enter the DB2 hypotheses hierarchy
shown in Figure 4-1 on page 117 and described in Example 4.2 on page 119, at
the top of the hierarchy, and validated each hypothesis (excluding the Web
application server since it was not applicable for our environment) in turn, as
follows:

� Hypothesis 1: Network performance
� Hypothesis 2: Federated server performance
� Hypothesis 3: Federated database server performance
� Hypothesis 4: Federated application/query performance

Hypothesis 1: Network performance
We consulted the network administrator about the performance of the network
and were informed that network performance was within normal bounds. Since
both the federated server and the remote data source servers resided on the
same network in our environment, we only needed to check the availability and
responsiveness of one network.

Our own attempts to ping the federated server (jamesbay.almaden.ibm.com®)
and the Oracle data source server (azov.almaden.ibm.com) returned very low
round-trip times, as shown in Figure 4-8 on page 172.

 Chapter 4. Performance problem determination scenarios 171

Figure 4-8 ping DB2 II federated server and Oracle data source server (azov)

Network performance was very good. We therefore concluded that network
performance was not the cause of the slow response times being experienced by
the user.

Hypothesis 2: Federated server performance
We asked the system administrator of the federated server machine to verify that
this machine was performing acceptably for the workload. Several utilities were
used to review the system-level performance.

The vmstat command was used to show CPU utilization information on the
federated server, as shown in Figure 4-9 on page 173.

172 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 4-9 vmstat command output from the federated server

The iostat command was used to show disk I/O utilization information on the
federated server, as shown in Figure 4-10 on page 174.

 Chapter 4. Performance problem determination scenarios 173

Figure 4-10 iostat command output from federated server

The lsps command was used to show paging space utilization on the federated
server, as shown in Figure 4-11.

Figure 4-11 lsps command output from the federated server

The ps -ef and ps aux commands were also run to display the processes
running on the federated server and their associated resource utilization, as
shown in Figure 4-12 on page 175 and Figure 4-13 on page 175.

174 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 4-12 ps -ef command output from the federated server

Figure 4-13 ps aux command from federated server

 Chapter 4. Performance problem determination scenarios 175

The commands show:

� The vmstat command output in Figure 4-9 on page 173 has the CPU “id”
column (which represents CPU idle percentage) ranging from 95 to 99
percent, indicating no CPU problems.

� The iostat command output in Figure 4-10 on page 174 has the “% tm_act”
column (which lists the percentage of time the disk was busy representing
bandwidth utilization) to be well below 40 percent, indicating no disk I/O
utilization problems.

� The lsps command output in Figure 4-11 on page 174 has the “%Used”
column (which lists the percent used of the paging space) to be 1 percent,
indicating no paging problems.

� The ps -ef and ps aux command outputs (Figure 4-12 on page 175 and
Figure 4-13 on page 175) have the CPU used for each process (“TIME” and
“%CPU” columns, respectively) well within bounds, indicating no process
CPU utilization problems.

Based on the above observations, we concluded that the performance problem
was not related to the machine or operating system of the federated server
machine.

Hypothesis 3: Federated database server performance
After confirming that the overall performance on the federated server machine
looked acceptable, we looked at the DB2 II federated database server.

We looked at three potential system constraints areas that could affect query
performance on the federated database server. These potential constraints areas
are:

� Connection constraints
� Sorting constraints
� Buffer pool constraints

Each of these aspects are validated in the following subsections.

Connection constraints
To determine whether connection constraints are a factor, we ran DB2
commands to review the relevant settings of the database manager and
database configuration parameters, as shown in Example 4-10 and
Example 4-11 on page 177.

Example 4-10 DBM CFG parameter settings affecting connections

$ db2 get dbm cfg | grep -i agent
 Priority of agents (AGENTPRI) = SYSTEM
 Max number of existing agents (MAXAGENTS) = 200

176 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Agent pool size (NUM_POOLAGENTS) = 10
 Initial number of agents in pool (NUM_INITAGENTS) = 5
 Max number of coordinating agents (MAX_COORDAGENTS) = (MAXAGENTS -
NUM_INITAGENTS)
 Max no. of concurrent coordinating agents (MAXCAGENTS) = MAX_COORDAGENTS
 Max number of client connections (MAX_CONNECTIONS) = MAX_COORDAGENTS
 Number of pooled fenced processes (FENCED_POOL) = MAX_COORDAGENTS
 SPM resync agent limit (SPM_MAX_RESYNC) = 20

Example 4-11 DB CFG parameter settings affecting connections

$db2 get db cfg for fedserv | grep -i appl
 Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4)
 Max size of appl. group mem set (4KB) (APPGROUP_MEM_SZ) = 30000
 Percent of mem for appl. group heap (GROUPHEAP_RATIO) = 70
 Max appl. control heap size (4KB) (APP_CTL_HEAP_SZ) = 128
 Default application heap (4KB) (APPLHEAPSZ) = 512
 Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8)
 Percent. of lock lists per application (MAXLOCKS) = 10
 Max number of active applications (MAXAPPLS) = 120
 Average number of active applications (AVG_APPLS) = 1
 Max DB files open per application (MAXFILOP) = 1024

We also collected snapshots showing monitor elements relevant to connection
information. These snapshots are shown in Example 4-12 and Example 4-13 on
page 178.

Example 4-12 DBM snapshot for connection information

$db2 get snapshot for dbm

 Database Manager Snapshot

...............lines have been removed..............................

Remote connections to db manager = 12
Remote connections executing in db manager = 0
Local connections = 0
Local connections executing in db manager = 0
Active local databases = 1

High water mark for agents registered = 199
High water mark for agents waiting for a token = 0
Agents registered = 68
Agents waiting for a token = 0
Idle agents = 0

...............lines have been removed..............................

 Chapter 4. Performance problem determination scenarios 177

Agents assigned from pool = 9584
Agents created from empty pool = 14027
Agents stolen from another application = 0
High water mark for coordinating agents = 199
Max agents overflow = 3
Hash joins after heap threshold exceeded = 0

...............lines have been removed..............................

Example 4-13 DB snapshot for connection information

$db2 get snapshot for database on fedserv

 Database Snapshot

...............lines have been removed..............................

High water mark for connections = 15
Application connects = 8276
Secondary connects total = 0
Applications connected currently = 12
Appls. executing in db manager currently = 0
Agents associated with applications = 12
Maximum agents associated with applications= 15
Maximum coordinating agents = 15

...............lines have been removed..............................

We concluded that connections were not the source of the performance problem
for the following reasons.

The database manager configuration parameter settings in Example 4-10 on
page 176 show the following:

� Max number of existing agents (MAXAGENTS) is 200.
� Max number of client connections (MAX_CONNECTIONS) is 195.
� Max number of concurrent coordinating agents (MAXCAGENTS) is 195.

The database configuration parameter settings in Example 4-11 on page 177
show the following: Max number of active applications (MAXAPPLS) for the
fedserv database is 120.

The database manager snapshot monitor values in Example 4-12 on page 177
show the following:

� The sum of (Remote connections to db manager + Local connections) is
12, which is less than MAX_CONNECTIONS (195).

178 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� The High water mark for agents registered (199) is less than
MAXAGENTS (200).

� The High water mark for agents waiting for a token is 0, which is less than
MAXCAGENTS (195).

� The High water mark for coordinating agents is 199, less than
MAX_COORDAGENTS (195).

The database snapshot monitor values in Example 4-13 on page 178 show the
following: The High water mark for connections is 15, less than MAXAPPLS
(120).

Sorting constraints
To determine whether sorting constraints are a factor, we ran DB2 commands to
review the relevant settings of the database manager and database configuration
parameters, as shown in Example 4-14, Example 4-15, and Example 4-16.

Example 4-14 DB and DBM CFG parameters affecting sorting

$ db2 get db cfg for fedserv | grep -i sort
 Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = (SHEAPTHRES)
 Sort list heap (4KB) (SORTHEAP) = 20000
 Index sort flag (INDEXSORT) = YES
$ db2 get dbm cfg | grep -i sort
 Sort (DFT_MON_SORT) = ON
 Sort heap threshold (4KB) (SHEAPTHRES) = 100000

Example 4-15 DBM snapshot for sorting information

$ db2 get snapshot for dbm | grep -i sort
Private Sort heap allocated = 0
Private Sort heap high water mark = 20018
Post threshold sorts = 0
Piped sorts requested = 4863
Piped sorts accepted = 4863
Sorting Information (SORT) = ON 06/21/2004 11:15:57.323761

Example 4-16 DB snapshot for sorting information

$ db2 get snapshot for db on fedserv | grep -i sort
Total Private Sort heap allocated = 0
Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Total sorts = 4978
Total sort time (ms) = 58
Sort overflows = 1
Active sorts = 0

 Chapter 4. Performance problem determination scenarios 179

We concluded that sorts were not the cause of the performance problem for the
following reasons.

The database manager snapshot monitor values in Example 4-15 on page 179
show the following:

� Private Sort heap high water mark (20018) is less than SHEAPTHRES
(100000).

� Post threshold sorts is 0.

� The difference between Piped sorts requested and Piped sorts accepted
is 0.

The database snapshot monitor values in Example 4-16 on page 179 show the
following:

� Shared Sort heap high water mark is 0.

� Sort overflows is 1 and the average sort time is (58 / 4978), which is very
small.

Buffer pool constraints
To determine whether buffer pool constraints are a factor, we ran DB2 commands
to review the relevant settings of the database manager and database
configuration parameters, as shown in Example 4-17.

Example 4-17 Buffer pool snapshot information

get snapshot for bufferpools on fedserv

 Bufferpool Snapshot

Bufferpool name = IBMDEFAULTBP
Database name = FEDSERV
Database path =
/data1/npart/db2i64/NODE0000/SQL00001/
Input database alias = FEDSERV
Snapshot timestamp = 06/24/2004 17:27:11.418138

Buffer pool data logical reads = 7908
Buffer pool data physical reads = 135
Buffer pool temporary data logical reads = 7
Buffer pool temporary data physical reads = 0
Buffer pool data writes = 0
Buffer pool index logical reads = 32557
Buffer pool index physical reads = 92
Buffer pool temporary index logical reads = 0
Buffer pool temporary index physical reads = 0
Total buffer pool read time (ms) = 293

180 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Total buffer pool write time (ms) = 0
Asynchronous pool data page reads = 9
Asynchronous pool data page writes = 0
Buffer pool index writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 28
Total elapsed asynchronous write time = 0
Asynchronous data read requests = 4
Asynchronous index read requests = 0
No victim buffers available = 0
Direct reads = 408
Direct writes = 0
Direct read requests = 57
Direct write requests = 0
Direct reads elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Database files closed = 0
Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
Unread prefetch pages = 0
Vectored IOs = 4
Pages from vectored IOs = 9
Block IOs = 0
Pages from block IOs = 0
Physical page maps = 0

Node number = 0
Tablespaces using bufferpool = 5
Alter bufferpool information:
 Pages left to remove = 0
 Current size = 75000
 Post-alter size = 75000

We concluded that the buffer pool was not the cause of the performance problem
for the following reasons. The buffer pool snapshot monitor values in
Example 4-17 on page 180 show the following:

� The buffer pool temporary data logical reads was 7, and temporary data
physical reads was 0. Both values were very low and did not indicate any
overflows for temporary data.

� The overall buffer pool hit ratio is (1-((135+92)/(7908+32557)))*100%, which
is approximately 99 percent.

� The Index buffer pool hit ratio is (1-(92/32557))*100%, which is about 100
percent.

 Chapter 4. Performance problem determination scenarios 181

Hypothesis 4: Federated application/query performance
Before one can investigate the cause of a query’s performance problem, one
needs to identify the query in question. After identifying the query in question,
one can begin diagnosing whether the performance problem is at the federated
server, the remote data source, or equally divided between the two, as discussed
in Example 4.2 on page 119.

1. Identify the application and query.

In some cases, we might know the application that is experiencing the
performance problem because the users have complained about it
specifically. However, the application may contain many queries, and it is
necessary to pinpoint the specific query causing the performance problem
before proceeding.

The approach used to pinpoint the problem query depends upon whether the
query is currently running as discussed in Ê on page 121.

Example 4-18 is an application snapshot that contains information we can
use to identify the specific queries executing at the time the snapshot is taken.

Example 4-18 Application snapshot

$db2 get snapshot for all applications

 Application Snapshot

Application handle = 75
Application status = Federated request pending
Status change time = 06/24/2004 18:11:17.161566
Application code page = 819
Application country/region code = 1
DUOW correlation token = *LOCAL.db2i64.0E07B5011047
Application name = db2bp
Application ID = *LOCAL.db2i64.0E07B5011047
Sequence number = 0001
TP Monitor client user ID =
TP Monitor client workstation name =

Attention: We have not shown our review of cache size constraints and
miscellaneous constraints here, but determined that there were no
system-wide performance constraints at the database server level using the
procedures described in “Cache size constraints” on page 134 and
“Miscellaneous constraints” on page 135, respectively.

Having eliminated system-wide federated server and database server
resource constraints as the potential cause of the performance problem, the
most likely cause was with a specific query.

182 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

TP Monitor client application name =
TP Monitor client accounting string =

Connection request start timestamp = 06/24/2004 18:10:47.445195
Connect request completion timestamp = 06/24/2004 18:10:47.467482
Application idle time =
CONNECT Authorization ID = DB2I64
Client login ID = db2i64
Configuration NNAME of client =
Client database manager product ID = SQL08020
Process ID of client application = 2220154
Platform of client application = AIX 64BIT
Communication protocol of client = Local Client

Inbound communication address = *LOCAL.db2i64

...............lines have been removed..............................

Statement type = Dynamic SQL Statement
Statement = Fetch
Section number = 201
Application creator = NULLID
Package name = SQLC2E05
Consistency Token = AAAAAcDU
Package Version ID =
Cursor name = SQLCUR201
Statement database partition number = 0
Statement start timestamp = 06/24/2004 18:11:17.092428
Statement stop timestamp =
Elapsed time of last completed stmt(sec.ms)= 0.000029
Total Statement user CPU time = 0.010000
Total Statement system CPU time = 0.010000

...............lines have been removed..............................

Dynamic SQL statement text:
select c_name, sum(c_acctbal) from ora.customer group by c_name

...............lines have been removed..............................

Example 4-18 on page 182 shows Dynamic SQL statement text that we have
highlighted. Although there may be many statements executing at a time,
application snapshot information may help narrow down the poorly
performing statement if you are familiar with the application name, specific
connection time, or the tables referenced in the statement text. The Elapsed
time of last completed stmt (sec.ms), Total Statement user CPU time, and
Total Statement system CPU time fields in the snapshot output can help
identify poorly performing queries.

 Chapter 4. Performance problem determination scenarios 183

Since the performance problem was ongoing at the time, we reviewed the
Dynamic SQL statement text in the application snapshot and used our
knowledge of the tables accessed by the application to identify the poorly
performing query shown in Example 4-19. This query reports the sum of
account balances for all customers by customer name, and includes a SUM
function and a GROUP BY clause.

Example 4-19 Problem query

select c_name, sum(c_acctbal)
from ora.customer
group by c_name;

2. Is the problem at the federated server or the remote data source or both?

Once the problem query has been identified, we need to determine if the
query’s performance problem is at the federated server, the remote data
source, or distributed between both.

This information can be determined from a dynamic SQL snapshot, as
discussed in 4.2.3, “Federated server or remote data source” on page 136.
Example 4-20 is a dynamic SQL snapshot, and includes the problem query
(highlighted) in the Statement text field.

Example 4-20 Dynamic SQL snapshot

$db2 get snapshot for dynamic sql on fedserv

 Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/npart/db2i64/NODE0000/SQL00001/

............. lines have been removed

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 80
 Best preparation time (ms) = 80
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 1500002
 Internal rows updated = 0
 Rows written = 1500000
 Statement sorts = 1
 Statement sort overflows = 1

184 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Total sort time = 4019
 Buffer pool data logical reads = 4
 Buffer pool data physical reads = 1
 Buffer pool temporary data logical reads = 31581
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 6
 Buffer pool index physical reads = 3
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 26.668711
 Total user cpu time (sec.ms) = 11.510000
 Total system cpu time (sec.ms) = 0.830000
 Statement text = select c_name, sum(c_acctbal) from
ora.customer group by c_name

............. lines have been removed

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 1500000
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 14.241853
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."C_NAME", A0."C_ACCTBAL" FROM
"IITEST"."CUSTOMER" A0

As discussed in 4.2.3, “Federated server or remote data source” on page 136,
since there is no direct mechanism to link the remote SQL fragments in the
dynamic cache with their corresponding user SQL statement, we generated
db2exfmt output for the user query, as shown in Example 4-21, to obtain this
link.

 Chapter 4. Performance problem determination scenarios 185

Example 4-21 db2exfmt output for the problem query

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-03-14.50.02.089128
EXPLAIN_REQUESTER: DB2I64

Database Context:

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

186 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

select c_name, sum(c_acctbal)
from ora.customer
group by c_name

Optimized Statement:

SELECT Q3.$C0 AS "C_NAME", Q3.$C1
FROM
 (SELECT Q2.$C0, SUM(Q2.$C1)
 FROM
 (SELECT Q1.C_NAME, Q1.C_ACCTBAL
 FROM ORA.CUSTOMER AS Q1) AS Q2
 GROUP BY Q2.$C0) AS Q3

Access Plan:

Total Cost: 126862
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 300000
 GRPBY
 (2)
 126790
 32173
 |
 300000
 TBSCAN
 (3)
 126749
 32173
 |
 300000
 SORT
 (4)
 126574
 32173
 |
 300000
 SHIP
 (5)
 126102
 32173

 Chapter 4. Performance problem determination scenarios 187

 |
 300000
 NICKNM: ORA
 CUSTOMER

1) RETURN: (Return Result)
Cumulative Total Cost: 126862
Cumulative CPU Cost: 1.80948e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 396.853
Cumulative Re-CPU Cost: 7.35922e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 126574
Estimated Bufferpool Buffers: 0
Remote communication cost:165498

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

5) From Operator #2

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q4.$C1+Q4.C_NAME

2) GRPBY : (Group By)
Cumulative Total Cost: 126790
Cumulative CPU Cost: 1.67597e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 324.862
Cumulative Re-CPU Cost: 6.02422e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 126574

188 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated Bufferpool Buffers: 0
Remote communication cost:165498

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

TRUE
GROUPBYN: (Number of Group By columns)

1
GROUPBYR: (Group By requirement)

1: Q2.C_NAME
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

4) From Operator #3

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

Output Streams:

5) To Operator #1

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q4.$C1+Q4.C_NAME

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 126749
Cumulative CPU Cost: 1.60097e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 284.417
Cumulative Re-CPU Cost: 5.27421e+08
Cumulative Re-I/O Cost: 0

 Chapter 4. Performance problem determination scenarios 189

Cumulative First Row Cost: 126574
Estimated Bufferpool Buffers: 0
Remote communication cost:165498

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

3) From Operator #4

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

Output Streams:

4) To Operator #2

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

4) SORT : (Sort)
Cumulative Total Cost: 126574
Cumulative CPU Cost: 1.27517e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 108.725
Cumulative Re-CPU Cost: 2.0162e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 126574
Estimated Bufferpool Buffers: 32173
Remote communication cost:165498

190 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

300000
ROWWIDTH: (Estimated width of rows)

40
SORTKEY : (Sort Key column)

1: Q2.C_NAME(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

2) From Operator #5

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_ACCTBAL+Q2.C_NAME

Output Streams:

3) To Operator #3

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

5) SHIP : (Ship)
Cumulative Total Cost: 126102
Cumulative CPU Cost: 4.00297e+08
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 108.725
Cumulative Re-CPU Cost: 2.0162e+08
Cumulative Re-I/O Cost: 0

 Chapter 4. Performance problem determination scenarios 191

Cumulative First Row Cost: 25.0079
Estimated Bufferpool Buffers: 32173
Remote communication cost:165498

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."C_NAME", A0."C_ACCTBAL" FROM "IITEST"."CUSTOMER" A0
SRCSEVER: (Source (ship from) server)

ORASERV
STREAM : (Remote stream)

FALSE

Input Streams:

1) From Object ORA.CUSTOMER

Estimated number of rows: 300000
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.C_ACCTBAL+Q1.C_NAME

Output Streams:

2) To Operator #4

Estimated number of rows: 300000
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_ACCTBAL+Q2.C_NAME

Objects Used in Access Plan:

Schema: DB2I64
Name: ORDERSMQT
Type: Materialized View (reference only)

192 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Schema: ORA
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-07-08-17.26.10.941686
Last statistics update: 2004-08-03-14.48.39.498055
Number of columns: 8
Number of rows: 300000
Width of rows: 63
Number of buffer pool pages: 32173
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

The RMTQTXT field of the SHIP operator 5 in Example 4-21 on page 186
contains the remote SQL fragment:

SELECT A0."C_NAME", A0."C_ACCTBAL" FROM "IITEST"."CUSTOMER" A0

This remote SQL fragment is located in the dynamic cache output shown in
Example 4-20 on page 184, and the following information can be gathered:

– Number of executions is 1 for the user-entered query as well as the
single remote SQL fragment.

– Total execution time (sec.ms), which is 26.668711 for the user-entered
query, and 14.241853 for the remote SQL fragment.

– Total user cpu time (sec.ms) and Total system cpu time (sec.ms),
which is 11.510000 and 0.830000 for the user-entered query, and zero for
the remote SQL fragment.

– Rows read is 1500002 for the user-entered query, which is the number of
rows returned to the user; and 1500000 for the remote SQL fragment,
which indicates the number of rows returned to the federated server from
the remote data source.

– Other fields of interest include Statement sorts, Statement sort
overflows, and Total sort time, which only apply to the user-entered
query. They have values 1, 1, and 4019, respectively.

We can derive the following information from these metrics:

Note: To obtain the average elapsed and CPU times, as well as the
number of rows returned, you must divide the values shown by the
Number of executions.

 Chapter 4. Performance problem determination scenarios 193

– The average number of rows returned from the remote data source to the
federated server is (1500000 / 1) = 1500000.

– The average elapsed time for the user query is (26.668711 / 1) =
26.668711 seconds, while that of the remote SQL fragment is (14.241853
/ 1) = 14.241853 seconds.

If the information for the user query had not been available from the dynamic
cache, SQL snapshot, you could possibly re-run the query in db2batch to get
similar statistics, as shown in Example 4-22 and Example 4-23.

Example 4-22 db2batch command

$db2batch -d fedserv -f query1.sql -r query1.out -o r 10 p 3

Example 4-23 db2batch output

select c_name, sum(c_acctbal)
from ora.customer
group by c_name

C_NAME 2
--
Customer#000000001 711.56
Customer#000000002 121.65
Customer#000000003 7498.12
Customer#000000004 2866.83
Customer#000000005 794.47
Customer#000000006 7638.57
Customer#000000007 9561.95
Customer#000000008 6819.74
Customer#000000009 8324.07
Customer#000000010 2753.54

Number of rows retrieved is: 1500000
Number of rows sent to output is: 10

Elapsed Time is: 25.760 seconds

Locks held currently = 0
Lock escalations = 0

Attention: In our example, given that the total query elapsed time is
26.668711 seconds, it is clear that the elapsed time of the query is spent
more or less equally at the federated server and the remote data source.
The percentage of time spent at the remote data source is ((14.241853 /
26.668711) x 100) = 53.4%.

194 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Total sorts = 1
Total sort time (ms) = 4029
Sort overflows = 1
Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Buffer pool data writes = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Buffer pool index writes = 0
Total buffer pool read time (ms) = 0
Total buffer pool write time (ms) = 0
Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
LSN Gap cleaner triggers = 0
Dirty page steal cleaner triggers = 0
Dirty page threshold cleaner triggers = 0
Direct reads = 0
Direct writes = 0
Direct read requests = 0
Direct write requests = 0
Direct read elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Rows selected = 1500000
Log pages read = 0
Log pages written = 0
Catalog cache lookups = 0
Catalog cache inserts = 0
Buffer pool data pages copied to ext storage = 0
Buffer pool index pages copied to ext storage = 0
Buffer pool data pages copied from ext storage = 0
Buffer pool index pages copied from ext storage = 0
Total Agent CPU Time (seconds) = 12.05
Post threshold sorts = 0
Piped sorts requested = 88
Piped sorts accepted = 88

Summary of Results
==================
 Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 25.760 12.050 1500000 10

 Chapter 4. Performance problem determination scenarios 195

Arith. mean 25.760 12.1
Geom. mean 25.760 12

Since the processing time is consumed almost equally at the federated server
and the remote data source, we need to investigate both federated server and
the remote data source related items, as described in 4.2.5, “Remote data
source related” on page 161.

3. Federated server related.

The Total sort time field in the dynamic cache output for the user-entered
query in Example 4-20 on page 184 is 4019 milliseconds, while the (Total
user cpu time (sec.ms) + Total system CPU time (sec.ms)) is =
(11.510000 + 0.830000) = 12.340000 seconds. This is almost equal to the
(26.668711 - 14.241853) = 12.425257 seconds spent at the federated server
and is probably entirely due to the processing of 1500002 rows. Unless the
number of rows is reduced, the processing time at the federated server can
not be reduced.

4. Remote data source related.

The Rows read field in the dynamic cache output for the remote SQL
fragment in Example 4-20 on page 184 has 1500000 rows, while the SHIP
operator 5 in the Access Plan section of Example 4-21 on page 186 estimates
that 300000 rows would be returned to the federated server. The Objects
used in the Access Plan section of Example 4-21 on page 186 also shows the
Number of rows being 300000 for the ORA.CUSTOMER nickname. This
information is obtained from nickname statistics recorded in the global
catalog.

Root cause of the problem
It appears that the actual number of rows retrieved from the remote data source
(1500000) has increased significantly as compared to the statistics stored in the
global catalog (300000), and is the primary reason for the extended response
times.

Apply best practices
We recommend the following best practices to address the problem of a large
number of rows being returned to the federated server from the remote data
source:

� Ensure that the federated server’s global catalog is completely in sync with
the remote data source catalog information—both statistics and index
information.

196 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

This involves the following steps:

a. Have the DBA at the remote data source update the catalog by running
the appropriate command/utility for ORA.CUSTOMER. The Oracle
command to update statistics is:

analyze table <tablename> compute statistics

b. Synchronize the federated server global catalog with statistics and index
information. This could involve a combination of executing the NNSTAT
stored procedure (see Example 4-24), and manually synchronizing index
specifications and nickname statistics as discussed in “Statistics” on
page 152.

Example 4-25 shows a query for determining the indexes associated with
the nickname ORA.CUSTOMER.

Example 4-24 Update nickname statistics from command line

connect to fedserv;
CALL SYSPROC.NNSTAT('FEDSERV', 'ORA', 'CUSTOMER', '/home/db2i64', ?,
?);

Example 4-25 Nickname index specifications

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

select substr(tabschema,1,4) as tabschema, substr(tabname,1,8) as tabname,
substr(indschema,1,4) as indschema, uniquerule, substr(indname,1,16) as
indname, substr(colnames,1,30) as colnames
from syscat.indexes
where tabschema = 'ORA' and tabname = 'CUSTOMER'

TABSCHEMA TABNAME INDSCHEMA INDNAME UNIQUERULE COLNAMES
--------- -------- --------- -------------- ---------- -------------------
ORA CUSTOMER ORA C_CK P +C_CUSTKEY
ORA CUSTOMER ORA C_MS_CK U +C_MKTSEGMENT+C_CUSTKEY

Important: We strongly recommend that you do not drop and recreate the
nickname to achieve synchronization, since it can have undesirable effects
on dependant objects such as dropping MQTs and marking views as
inoperable.

 Chapter 4. Performance problem determination scenarios 197

ORA CUSTOMER ORA C_NAT_CKEY_RE U +C_NATIONKEY+C_CUSTKEY

 3 record(s) selected.

Investigations revealed that the indexes were in sync, and no new index
specifications needed to be created or existing indexes dropped.

� Execute db2exfmt with the current statistics and review access path changes,
if any. Example 4-26 shows that there were no changes to the access path. If
there are changes, consider executing the query to assess performance.

Example 4-26 db2exfmt after nickname statistics updated

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-07-08-17.26.19.195544
EXPLAIN_REQUESTER: DB2I64

Database Context:

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

198 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select c_name, sum(c_acctbal)
from ora.customer
group by c_name

Optimized Statement:

SELECT Q3.$C0 AS "C_NAME", Q3.$C1
FROM
 (SELECT Q2.$C0, SUM(Q2.$C1)
 FROM
 (SELECT Q1.C_NAME, Q1.C_ACCTBAL
 FROM ORA.CUSTOMER AS Q1) AS Q2
 GROUP BY Q2.$C0) AS Q3

Access Plan:

Total Cost: 131549
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 1.5e+06
 GRPBY
 (2)
 131189
 32173
 |
 1.5e+06
 TBSCAN
 (3)
 130987
 32173
 |

 Chapter 4. Performance problem determination scenarios 199

 1.5e+06
 SORT
 (4)
 130105
 32173
 |
 1.5e+06
 SHIP
 (5)
 126494
 32173
 |
 1.5e+06
 NICKNM: ORA
 CUSTOMER

1) RETURN: (Return Result)
Cumulative Total Cost: 131549
Cumulative CPU Cost: 1.05014e+10
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 1443.68
Cumulative Re-CPU Cost: 2.67715e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 130105
Estimated Bufferpool Buffers: 16130
Remote communication cost:827474

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

5) From Operator #2

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

200 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q4.$C1+Q4.C_NAME

2) GRPBY : (Group By)
Cumulative Total Cost: 131189
Cumulative CPU Cost: 9.83393e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 1083.72
Cumulative Re-CPU Cost: 2.00965e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 130105
Estimated Bufferpool Buffers: 16130
Remote communication cost:827474

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

TRUE
GROUPBYN: (Number of Group By columns)

1
GROUPBYR: (Group By requirement)

1: Q2.C_NAME
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

4) From Operator #3

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

Output Streams:

5) To Operator #1

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

 Chapter 4. Performance problem determination scenarios 201

+Q4.$C1+Q4.C_NAME

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 130987
Cumulative CPU Cost: 9.45893e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 881.499
Cumulative Re-CPU Cost: 1.63465e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 130105
Estimated Bufferpool Buffers: 16130
Remote communication cost:827474

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

3) From Operator #4

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

Output Streams:

4) To Operator #2

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

202 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

4) SORT : (Sort)
Cumulative Total Cost: 130105
Cumulative CPU Cost: 7.82428e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 130105
Estimated Bufferpool Buffers: 48303
Remote communication cost:827474

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

1500000
ROWWIDTH: (Estimated width of rows)

40
SORTKEY : (Sort Key column)

1: Q2.C_NAME(A)
SPILLED : (Pages spilled to bufferpool or disk)

16130
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

2) From Operator #5

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_ACCTBAL+Q2.C_NAME

Output Streams:

3) To Operator #3

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

 Chapter 4. Performance problem determination scenarios 203

Column Names:

+Q2.C_NAME(A)+Q2.C_ACCTBAL

5) SHIP : (Ship)
Cumulative Total Cost: 126494
Cumulative CPU Cost: 1.12815e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 501.226
Cumulative Re-CPU Cost: 9.29471e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.0079
Estimated Bufferpool Buffers: 32173
Remote communication cost:827474

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."C_NAME", A0."C_ACCTBAL" FROM "IITEST"."CUSTOMER" A0
SRCSEVER: (Source (ship from) server)

ORASERV
STREAM : (Remote stream)

FALSE

Input Streams:

1) From Object ORA.CUSTOMER

Estimated number of rows: 1.5e+06
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.C_ACCTBAL+Q1.C_NAME

Output Streams:

2) To Operator #4

Estimated number of rows: 1.5e+06
Number of columns: 2

204 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Subquery predicate ID: Not Applicable

Column Names:

+Q2.C_ACCTBAL+Q2.C_NAME

Objects Used in Access Plan:

Schema: ORA
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-07-08-17.26.10.941686
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 63
Number of buffer pool pages: 32173
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

� If there are no changes (as was the situation with our problem query) then
consider:

– Resetting user expectations in the light of the increased volume of data

– Asking the remote DBA to tune their environment for the SQL fragment

– Investigating the possibility of encouraging pushdown of the GROUP BY to
reduce the number of rows being returned to the federated server by
setting server options affecting the collating sequence

– Investigating the possibility of designing MQTs on the nickname in order to
improve query performance

Since tuning tends to be a trial-and-error iterative process, it is necessary to
continue to monitor the system in order to asses the impact of the changes and
act accordingly.

Note: Tuning the sort heap and buffer pool does not seem appropriate for
this query since the sort costs are quite small relative to the cost of
retrieving rows from the remote data source.

 Chapter 4. Performance problem determination scenarios 205

4.4.3 Poorly tuned sort heap and buffer pools
The SORTHEAP database configuration parameter and the buffer pool for the
temporary tablespace are system-wide tuning options that can impact the
performance of a federated query. Potential performance problems with them are
generally detected through routine monitoring of the DB2 II environment.

Federated servers can have significant requirements for sorting rows due to
joins, ORDER BY, and GROUP BY activity. Sort performance can be impacted
by SORTHEAP, SHEAPTHRES, the setting of INTRA_PARALLEL, and buffer
pool size associated with temporary tablespaces.

In this scenario, we highlight the potential need for tuning the SORTHEAP and
buffer pools in a DB2 II environment. Routine monitoring tends to be preemptive
in nature since it involves detecting deteriorating trends of key performance
drivers and addressing them before a problem gets out of hand.

Triggering event
Analysis of database manager and database snapshot activity highlighted
potential problems of a high percentage of sort overflows meriting further
investigation.

Hypotheses and validations
Since our triggering event was routine monitoring snapshots, we could go directly
to the step of evaluating the federated database server, bypassing network
performance and federated server performance considerations.

Example 4-27 and shows the snapshot output that triggered the investigation.

Example 4-27 Routine monitoring snapshot information

$db2 get snapshot for all on fedserv

 Database Snapshot

Database name = FEDSERV
Database path =
/data1/npart/db2i64/NODE0000/SQL00001/
Input database alias = FEDSERV
Database status = Active
Catalog database partition number = 0
Catalog network node name =
Operating system running at database server= AIX 64BIT
Location of the database = Local
First database connect timestamp = Not Collected
Last reset timestamp = Not Collected
Last backup timestamp = Not Collected

206 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Snapshot timestamp = 07/06/2004 18:57:24.781788

................. lines have been removed

Total Private Sort heap allocated = 1381
Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Total sorts = 138036
Total sort time (ms) = 268904
Sort overflows = 6914
Active sorts = 5
................. lines have been removed

 Bufferpool Snapshot

Bufferpool name = IBMDEFAULTBP
Database name = FEDSERV
Database path =
/data1/npart/db2i64/NODE0000/SQL00001/
Input database alias = FEDSERV
Snapshot timestamp = 07/06/2004 18:57:24.781788

Buffer pool data logical reads = 563
Buffer pool data physical reads = 166
Buffer pool temporary data logical reads = 3948935
Buffer pool temporary data physical reads = 264347
Buffer pool data writes = 329678
Buffer pool index logical reads = 520
Buffer pool index physical reads = 124
Buffer pool temporary index logical reads = 0
Buffer pool temporary index physical reads = 0
Total buffer pool read time (ms) = 0
Total buffer pool write time (ms) = 0

Example 4-27 on page 206 shows the following sort and buffer pool related
snapshot information of interest:

� The ratio ((Sort overflows) / (Total sorts)) is (6914 / 138036) = 5%.

This ratio had been rising steadily over an extended period of time and the
current high value of 5 percent is considered to merit further investigation in
order to preempt future user complaints about response times.

When sort overflows occur, data is written to the temporary tablespaces that
are associated with a buffer pool. When the buffer pool fills, data is overflowed
to disk. This can result in poor query performance.

 Chapter 4. Performance problem determination scenarios 207

� The Buffer pool temporary data logical reads (3948935) and Buffer pool
temporary data physical reads (264347) values for the temporary table
space IBMDEFAULTBP indicate a buffer hit ratio of (1 - (264347 / 3948935))
= 93.1%, which is very good.

� The Buffer pool data writes (329678) value merits investigation since the
large value indicates sort overflows to disk or temporary tables being created.

Hypothesis 1: Federated database server performance
Since we felt that the percentage of sort overflows was unacceptably high, we
listed the following:

� Sort-related current database manager configuration and database
configuration information, as shown in Example 4-28

� Size of the default buffer pool that was used for the temporary tablespace, as
shown in Example 4-29

� Database manager snapshot output shown in Example 4-30 on page 208 that
was captured at the same time as the database snapshot shown in
Example 4-27 on page 206

Example 4-28 DB and DBM CFG parameters affecting sorting

$ db2 get db cfg for fedserv | grep -i sort
 Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = (SHEAPTHRES)
 Sort list heap (4KB) (SORTHEAP) = 256
 Index sort flag (INDEXSORT) = YES
$ db2 get dbm cfg | grep -i sort
 Sort (DFT_MON_SORT) = ON
 Sort heap threshold (4KB) (SHEAPTHRES) = 20000

Example 4-29 Default BP size

select bpname, npages, pagesize from syscat.bufferpools

BPNAME NPAGES PAGESIZE
----------------------------- ----------- -----------
IBMDEFAULTBP 1000 4096

 1 record(s) selected.

Example 4-30 DBM snapshot for sorting information

$ db2 get snapshot for dbm | grep -i sort

Private Sort heap allocated = 1716

208 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Private Sort heap high water mark = 3055
Post threshold sorts = 0
Piped sorts requested = 138469
Piped sorts accepted = 138469
Sorting Information (SORT) = ON 07/06/2004 18:59:24.335670

Example 4-28 on page 208 shows the SORTHEAP and SHEAPTHRES
parameters having default values of 256 and 20000, respectively, while the
IBMDEFAULTBP buffer pool size (see Example 4-29 on page 208) was also set
to the default value of 1000. It appears that these parameters have not been
tuned for this particular workload.

The database manager snapshot (Example 4-30) shows the following
information of interest:

� Private Sort heap high water mark is 3055.

� Post threshold sorts is 0.

� Ratio of Piped sorts requested and Piped sorts accepted is 100 percent.

There appear to be no problems with post threshold sorts or piped sorts. The
Private Sort heap high water mark provides guidelines for setting the
SHEAPTHRES database manager configuration parameter.

Root cause of the problem
Letting the SORTHEAP and SHEAPTHRES configuration parameters default
appears to be at least one of the causes that could result in performance
problems in the future. It is also possible that inadequate indexes as well as
poorly written queries are causing sorts to place undue demand on the sort heap
and the buffer pool.

Apply best practices
We recommend the following best practices to address the sort overflow problem
on the DB2 II federated database server:

� Tune the SORTHEAP and/or SHEAPTHRES configuration parameters to
minimize the percent of sort overflows. Increase these values incrementally
via a trial-and-error process to minimize sort overflows. Example 4-31 shows
the commands for modifying these parameters.

Example 4-31 Adjust SHEAPTHRES and SORTHEAP configuration parameters

update dbm cfg using sheapthres 100000
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.

 Chapter 4. Performance problem determination scenarios 209

SQL1362W One or more of the parameters submitted for immediate modification
were not changed dynamically. Client changes will not be effective until the
next time the application is started or the TERMINATE command has been issued.
Server changes will not be effective until the next DB2START command.

update db cfg for fedserv using sortheap 20000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

� Monitor queries in the workload to determine if sorts can be eliminated or the
number of rows sorted reduced, as follows:

– If there are MQTs or local tables involved in a federated query, consider
creating appropriate indexes on them to avoid sorts.

– Verify that the DB2 II configuration options do not inhibit pushdown of
predicates or sorts to the remote data source.

– Facilitate the selection of hash join over merge scan join by ensuring that
equality predicates have matching data types and matching scale and
precision. This can minimize sorts even though the sort heap is used for
the hash join.

Since tuning tends to be a trial-and-error iterative process, it is necessary to
continue to monitor the system in order to asses the impact of the changes and
act accordingly.

4.4.4 Missing or unavailable MQTs
MQTs were designed to improve the performance of queries in a data
warehousing environment where users often issue queries repetitively against
large volumes of data with minor variations in a query’s predicates. However,
MQTs do not require an aggregate function in their definition to be beneficial.

MQTs provide a look-aside capability for such queries that can result in orders of
magnitude improvement in performance. When appropriate MQTs are defined
on base tables, queries that access these base tables are automatically rewritten
(if appropriate) by the DB2 optimizer to access the MQTs instead, in order to
achieve superior query performance.

An MQT can also be built against a federated nickname in addition to local tables
on the federated server. Queries written against federated nicknames can be
rewritten by the DB2 optimizer to choose the MQT instead to satisfy the query,
thereby avoiding costly remote data source access.

Note: Tuning the buffer pool does not seem appropriate for this query since
the hit ratio is sufficiently high (93.1 percent).

210 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

In this scenario, we show how dropping and recreating a nickname in order to
synchronize statistics and index information between the remote data source and
the DB2 II global catalog can result in the dropping of an MQT dependent on this
nickname. This in turn will result in performance degradation of queries that
previously routed the query to the MQT. In DB2 II terminology, this is called
caching the remote data locally in persistent tables (MQTs) and refreshing the
data periodically to meet the currency needs of the users.

Triggering event
A user complained about poor response times with a specific query. The user
claimed that the query had been performing okay until today.

Hypotheses and validations
Since this was a complaint from a user about the performance of a specific
query, as per Figure 4-3 on page 122, we decided to enter the DB2 hypotheses
hierarchy shown in Figure 4-1 on page 117 and described in Example 4.2 on
page 119, at a lower level, bypassing network- and system-related problems, and
focused directly on federated application/query performance, as follows:.

Hypothesis 1: Federated application/query performance
Before one can investigate the cause of a query’s performance problem, one
needs to identify the query in question. After identifying the query in question,
one can begin diagnosing whether the performance problem is at the federated
server, the remote data source, or equally divided between the two, as discussed
in Example 4.2 on page 119.

1. Identify the application and query.

In this case the user specifically identified the query in question as being the
one shown in Example 4-32. It counts by region the number of orders
received in a particular period.

Example 4-32 Problem query

select r_name, count(*)
from ora.orders, ora.customer, ora.nation, ora.region
where o_custkey = c_custkey
and c_nationkey = n_nationkey
and n_regionkey = r_regionkey
and (char(year(o_orderdate))||char(month(o_orderdate))) >
((char(year(current date - 84 months)))||(char(month(current date - 84
months))))
group by r_name
;

2. Determine if the problem is at the federated server or the data source.

 Chapter 4. Performance problem determination scenarios 211

Once the problem query has been identified, we need to determine if the
query’s performance problem is at the federated server, the remote data
source, or distributed between both.

This information can be determined from a dynamic SQL snapshot, as
discussed in 4.2.3, “Federated server or remote data source” on page 136.
Example 4-33 is a dynamic SQL snapshot, and includes the problem query
(highlighted) in the Statement text field.

Example 4-33 Dynamic SQL snapshot

get snapshot for dynamic sql on fedserv

 Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/npart/db2i64/NODE0000/SQL00001/

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 57
 Best preparation time (ms) = 57
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 5
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 1
 Statement sort overflows = 0
 Total sort time = 1098
 Buffer pool data logical reads = 4
 Buffer pool data physical reads = 1
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 6
 Buffer pool index physical reads = 3
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 127.715346
 Total user cpu time (sec.ms) = 74.800000
 Total system cpu time (sec.ms) = 2.220000
 Statement text = select r_name, count(*) from ora.orders,
ora.customer, ora.nation, ora.region where o_custkey = c_custkey and
c_nationkey = n_nationkey and n_regionkey = r_regionkey and
(char(year(o_orderdate))||char(month(o_orderdate))) > ((char(year(current date
- 84 months)))||(char(month(current date - 84 months)))) group by r_name

212 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 15000000
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 87.370940
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."O_ORDERDATE", A1."N_REGIONKEY"
FROM "IITEST"."ORDERS" A0, "IITEST"."NATION" A1, "IITEST"."CUSTOMER" A2 WHERE
(A2."C_NATIONKEY" = A1."N_NATIONKEY") AND (A0."O_CUSTKEY" = A2."C_CUSTKEY")

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 5
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 0.001234
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000

 Chapter 4. Performance problem determination scenarios 213

 Statement text = SELECT A0."R_REGIONKEY", A0."R_NAME" FROM
"IITEST"."REGION" A0

As discussed in 4.2.3, “Federated server or remote data source” on page 136,
since there is no direct mechanism to link the remote SQL fragments in the
dynamic cache with their corresponding user SQL statement, we generated
db2exfmt output for the user query, as shown in Example 4-34, to obtain this link.

Example 4-34 db2exfmt output for the problem query

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-03-16.00.32.187732
EXPLAIN_REQUESTER: DB2I64

Database Context:

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------

214 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select r_name, count(*)
from ora.orders, ora.customer, ora.nation, ora.region
where o_custkey = c_custkey and c_nationkey = n_nationkey and n_regionkey =
 r_regionkey and (char(year(o_orderdate))||char(month(o_orderdate))) >
 ((char(year(current date - 84 months)))||(char(month(current date -
 84 months))))
group by r_name

Optimized Statement:

SELECT Q6.$C0 AS "R_NAME", Q6.$C1
FROM
 (SELECT Q5.$C0, COUNT(*)
 FROM
 (SELECT Q1.R_NAME
 FROM ORA.REGION AS Q1, ORA.NATION AS Q2, ORA.CUSTOMER AS Q3, ORA.ORDERS
 AS Q4
 WHERE (Q2.N_REGIONKEY = Q1.R_REGIONKEY) AND (Q3.C_NATIONKEY =
 Q2.N_NATIONKEY) AND (Q4.O_CUSTKEY = Q3.C_CUSTKEY) AND
 ((CHAR(YEAR(-(CURRENT DATE, 84, 2))) || CHAR(MONTH(-(CURRENT
 DATE, 84, 2)))) < (CHAR(YEAR(Q4.O_ORDERDATE)) ||
 CHAR(MONTH(Q4.O_ORDERDATE))))) AS Q5
 GROUP BY Q5.$C0) AS Q6

Access Plan:

Total Cost: 1.02509e+06
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 5
 GRPBY
 (2)
 1.02509e+06

 Chapter 4. Performance problem determination scenarios 215

 220620
 |
 5
 TBSCAN
 (3)
 1.02509e+06
 220620
 |
 5
 SORT
 (4)
 1.02509e+06
 220620
 |
 7.50047e+06
 HSJOIN
 (5)
 1.02228e+06
 220620
 /-----+----\
 7.50047e+06 5
 FILTER SHIP
 (6) (13)
 1.02131e+06 0.00883415
 220620 0
 | |
 2.25014e+07 5
 SHIP NICKNM: ORA
 (7) REGION
 951110
 220620
 +-----------------+-----------------+
 25 1.5e+06 3e+07
 NICKNM: ORA NICKNM: ORA NICKNM: ORA
 NATION CUSTOMER ORDERS

1) RETURN: (Return Result)
Cumulative Total Cost: 1.02509e+06
Cumulative CPU Cost: 1.65932e+11
Cumulative I/O Cost: 220620
Cumulative Re-Total Cost: 1.02228e+06
Cumulative Re-CPU Cost: 1.60726e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.02509e+06
Estimated Bufferpool Buffers: 0
Remote communication cost:1.18169e+07

216 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

11) From Operator #2

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.$C1+Q7.R_NAME

2) GRPBY : (Group By)
Cumulative Total Cost: 1.02509e+06
Cumulative CPU Cost: 1.65932e+11
Cumulative I/O Cost: 220620
Cumulative Re-Total Cost: 1.02228e+06
Cumulative Re-CPU Cost: 1.60726e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.02509e+06
Estimated Bufferpool Buffers: 0
Remote communication cost:1.18169e+07

Arguments:

AGGMODE : (Aggregration Mode)

FINAL
GROUPBYC: (Group By columns)

TRUE
GROUPBYN: (Number of Group By columns)

1
GROUPBYR: (Group By requirement)

1: Q5.R_NAME
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

 Chapter 4. Performance problem determination scenarios 217

10) From Operator #3

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.R_NAME(A)

Output Streams:

11) To Operator #1

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.$C1+Q7.R_NAME

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 1.02509e+06
Cumulative CPU Cost: 1.65932e+11
Cumulative I/O Cost: 220620
Cumulative Re-Total Cost: 1.02228e+06
Cumulative Re-CPU Cost: 1.60726e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.02509e+06
Estimated Bufferpool Buffers: 0
Remote communication cost:1.18169e+07

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

9) From Operator #4

Estimated number of rows: 5

218 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.R_NAME(A)

Output Streams:

10) To Operator #2

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.R_NAME(A)

4) SORT : (Sort)
Cumulative Total Cost: 1.02509e+06
Cumulative CPU Cost: 1.65932e+11
Cumulative I/O Cost: 220620
Cumulative Re-Total Cost: 1.02228e+06
Cumulative Re-CPU Cost: 1.60726e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.02509e+06
Estimated Bufferpool Buffers: 220622
Remote communication cost:1.18169e+07

Arguments:

AGGMODE : (Aggregration Mode)

PARTIAL
DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

5
ROWWIDTH: (Estimated width of rows)

36
SORTKEY : (Sort Key column)

1: Q5.R_NAME(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

 Chapter 4. Performance problem determination scenarios 219

Input Streams:

8) From Operator #5

Estimated number of rows: 7.50047e+06
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.R_NAME

Output Streams:

9) To Operator #3

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.R_NAME(A)

5) HSJOIN: (Hash Join)
Cumulative Total Cost: 1.02228e+06
Cumulative CPU Cost: 1.60726e+11
Cumulative I/O Cost: 220620
Cumulative Re-Total Cost: 1.02228e+06
Cumulative Re-CPU Cost: 1.60726e+11
Cumulative Re-I/O Cost: 220620
Cumulative First Row Cost: 1.02228e+06
Estimated Bufferpool Buffers: 220622
Remote communication cost:1.18169e+07

Arguments:

BITFLTR : (Hash Join Bit Filter used)

FALSE
EARLYOUT: (Early Out flag)

NONE
HASHCODE: (Hash Code Size)

24 BIT
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

220 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

3) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.2

Predicate Text:

(Q2.N_REGIONKEY = Q1.R_REGIONKEY)

Input Streams:

5) From Operator #6

Estimated number of rows: 7.50047e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_REGIONKEY+Q4.O_ORDERDATE

7) From Operator #13

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q1.R_NAME+Q1.R_REGIONKEY

Output Streams:

8) To Operator #4

Estimated number of rows: 7.50047e+06
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.R_NAME

6) FILTER: (Filter)
Cumulative Total Cost: 1.02131e+06

 Chapter 4. Performance problem determination scenarios 221

Cumulative CPU Cost: 1.58917e+11
Cumulative I/O Cost: 220620
Cumulative Re-Total Cost: 1.02131e+06
Cumulative Re-CPU Cost: 1.58917e+11
Cumulative Re-I/O Cost: 220620
Cumulative First Row Cost: 951110
Estimated Bufferpool Buffers: 220621
Remote communication cost:1.18169e+07

Arguments:

JN INPUT: (Join input leg)

OUTER

Predicates:

6) Residual Predicate

Relational Operator: Less Than (<)
Subquery Input Required: No
Filter Factor: 0.333333

Predicate Text:

((CHAR(YEAR(-(CURRENT DATE, 84, 2))) ||
 CHAR(MONTH(-(CURRENT DATE, 84, 2)))) <
 (CHAR(YEAR(Q4.O_ORDERDATE)) ||
 CHAR(MONTH(Q4.O_ORDERDATE))))

Input Streams:

4) From Operator #7

Estimated number of rows: 2.25014e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_REGIONKEY+Q4.O_ORDERDATE

Output Streams:

5) To Operator #5

Estimated number of rows: 7.50047e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

222 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q2.N_REGIONKEY+Q4.O_ORDERDATE

7) SHIP : (Ship)
Cumulative Total Cost: 951110
Cumulative CPU Cost: 2.87461e+10
Cumulative I/O Cost: 220620
Cumulative Re-Total Cost: 951110
Cumulative Re-CPU Cost: 2.87461e+10
Cumulative Re-I/O Cost: 220620
Cumulative First Row Cost: 951110
Estimated Bufferpool Buffers: 220621
Remote communication cost:1.18169e+07

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."O_ORDERDATE", A1."N_REGIONKEY" FROM "IITEST"."ORDERS" A0,
"IITEST"."NATION" A1, "IITEST"."CUSTOMER" A2 WHERE (A2."C_NATIONKEY" =
A1."N_NATIONKEY") AND (A0."O_CUSTKEY" = A2."C_CUSTKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object ORA.ORDERS

Estimated number of rows: 3e+07
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q4.RID+Q4.O_ORDERDATE+Q4.O_CUSTKEY

2) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

 Chapter 4. Performance problem determination scenarios 223

Column Names:

+Q2.RID+Q2.N_REGIONKEY+Q2.N_NATIONKEY

3) From Object ORA.CUSTOMER

Estimated number of rows: 1.5e+06
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q3.RID+Q3.C_NATIONKEY+Q3.C_CUSTKEY

Output Streams:

4) To Operator #6

Estimated number of rows: 2.25014e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_REGIONKEY+Q4.O_ORDERDATE

13) SHIP : (Ship)
Cumulative Total Cost: 0.00883415
Cumulative CPU Cost: 16382
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00171431
Cumulative Re-CPU Cost: 3179
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0028295
Estimated Bufferpool Buffers: 1
Remote communication cost:11.3594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

224 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

SELECT A0."R_REGIONKEY", A0."R_NAME" FROM "IITEST"."REGION" A0
SRCSEVER: (Source (ship from) server)

ORASERV
STREAM : (Remote stream)

FALSE

Input Streams:

6) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.R_NAME+Q1.R_REGIONKEY

Output Streams:

7) To Operator #5

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q1.R_NAME+Q1.R_REGIONKEY

Objects Used in Access Plan:

Schema: ORA
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-08-03-15.26.18.435035
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 42
Number of buffer pool pages: 32173
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node

 Chapter 4. Performance problem determination scenarios 225

Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: NATION
Type: Nickname

Time of creation: 2004-06-16-23.22.43.109494
Last statistics update:
Number of columns: 4
Number of rows: 25
Width of rows: 42
Number of buffer pool pages: 15
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: ORDERS
Type: Nickname

Time of creation: 2004-06-18-18.14.00.595431
Last statistics update: 2004-06-21-09.48.39.550659
Number of columns: 9
Number of rows: 30000000
Width of rows: 41
Number of buffer pool pages: 217186
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: REGION
Type: Nickname

Time of creation: 2004-06-16-23.22.43.342734
Last statistics update:
Number of columns: 3
Number of rows: 5
Width of rows: 56
Number of buffer pool pages: 15
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000

226 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

The RMTQTXT field of the SHIP operator 7 in Example 4-34 on page 214
contains the remote SQL fragment:

SELECT A0."O_ORDERDATE", A1."N_REGIONKEY" FROM "IITEST"."ORDERS" A0,
"IITEST"."NATION" A1, "IITEST"."CUSTOMER" A2 WHERE (A2."C_NATIONKEY" =
A1."N_NATIONKEY") AND (A0."O_CUSTKEY" = A2."C_CUSTKEY")

The RMTQTXT field of the SHIP operator 13 in Example 4-34 on page 214
contains the remote SQL fragment:

SELECT A0."R_REGIONKEY", A0."R_NAME" FROM "IITEST"."REGION" A0

These remote SQL fragments are located in the dynamic cache output shown in
Example 4-33 on page 212, and the following information can be gathered:

� Number of executions is 1 for the user-entered query as well as the two
remote SQL fragments.

� Total execution time (sec.ms), which is 127.715346 seconds for the
user-entered query, and 87.370940 seconds and 0.001234 seconds for each
of the remote SQL fragments.

� Total user cpu time (sec.ms) and Total system cpu time (sec.ms), which
is 74.800000 and 2.220000 seconds for the user-entered query, and zero for
the two remote SQL fragments.

� Rows read is 5 for the user-entered query, which is the number of rows
returned to the user, and 15000000 rows and 5 rows from each of the remote
SQL fragment data sources returned to the federated server.

� Other fields of interest include Statement sorts, Statement sort overflows,
and Total sort time, which only apply to the user-entered query, and have
values 1, zero, and 1098 milliseconds, respectively.

We can derive the following information from these metrics:

� The average number of rows returned from each remote data source to the
federated server is (15000000 / 1) = 15000000 and (5 /1) = 5 rows,
respectively.

Note: To obtain the average elapsed and CPU times, as well as the number of
rows returned, you must divide the values shown by the Number of
executions.

 Chapter 4. Performance problem determination scenarios 227

� The average elapsed time for the user query is (127.715346 / 1) =
127.715346 seconds, while that of each remote SQL fragment is (87.370940 /
1) = 87.370940 seconds and (0.001234 /1) = 0.001234 seconds,
respectively.

Since the predominant processing time is consumed at one of the remote data
sources (ORDERS, NATION, and CUSTOMER tables), we need to investigate
remote data source related items, as described in 4.2.5, “Remote data source
related” on page 161.

The Rows read field in the dynamic cache output for one of the remote SQL
fragments in Example 4-33 on page 212 has 15000000 rows being returned to
the federated server, while the SHIP operator 7 in the Access Plan section of
Example 4-34 on page 214 estimates that 2.25014e+07 rows would be returned
to the federated server, and the SHIP operator 13 in the Access Plan section of
Example 4-34 on page 214 estimates that 5 rows would be returned to the
federated server. The various Objects used in the Access Plan section of
Example 4-34 on page 214 shows the Number of rows being 5 for
ORA.REGION, 25 for ORA.NATION, 1.5e+06 for the ORA.CUSTOMER, and
3e+07 for ORA.ORDERS. nickname. This information is obtained from nickname
statistics recorded in the global catalog.

We therefore decided to investigate MQTs dependent on these nicknames, and
determined (using SQL against the catalog—query not shown here) that there
were no MQTs dependent on these four nicknames.

Root cause of the problem
The root cause of the problem was that an MQT that had been designed
specifically for this query had somehow been dropped, resulting in poor
performance times for the query.

Attention: In our example, given that the total query elapsed time is
127.715346 seconds, it is clear that more than two thirds of the elapsed time
of the query is spent at the remote data source. (((87.370940 + 0.001234) /
127.715346) x 100) = 68.41% of the query elapsed time is accounted for at
the remote data source indicating that to be the potential source of the
performance problem.

Note: At this point, we cross checked this explain output with a history of
explain output for this query, and determined that previous explains had
exploited an aggregate MQT that had been created on these four nicknames
to improve the performance of precisely such queries. The db2exfmt output in
Example 4-34 on page 214 shows no MQT being used.

228 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

A further investigation indicated that the ORA.CUSTOMER and ORA.ORDERS
nicknames had been dropped and recreated to resynchronize the index
information and the statistics, which had resulted in all MQTs dependent on
these nicknames to be dropped. Human error had caused the dependent MQTs
not to be recreated after the nicknames had been recreated.

Apply best practices
In this case, the solution involves recreating the MQT, verifying (using db2exfmt)
that the DB2 optimizer had indeed routed the query to the ORDERSMQT, and
then executing the query.

The ORDERSMQT creation, db2exfmt output, and dynamic cache snapshot are
shown in Example 4-35, Example 4-36 on page 230, and Example 4-37 on
page 238, respectively.

Example 4-35 MQT definition for ORDERSMQT

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

CREATE TABLE ORDERSMQT (REGION, YRMONTH, COUNT)
AS (SELECT r_name,
char(year(o_orderdate))||char(month(o_orderdate)) as yrmonth ,
count(*)
from ora.orders, ora.customer, ora.nation, ora.region
where o_custkey = c_custkey
and c_nationkey = n_nationkey
and n_regionkey = r_regionkey
group by r_name, char(year(o_orderdate))||char(month(o_orderdate)))
DATA INITIALLY DEFERRED
REFRESH DEFERRED
DB20000I The SQL command completed successfully.

REFRESH TABLE ORDERSMQT
DB20000I The SQL command completed successfully.

Note: We strongly recommend that the Statistics Update facility or NNSTAT
stored procedure and manual procedures be used to synchronize the global
catalog with the remote data source to avoid precisely such undesirable side
effects.

 Chapter 4. Performance problem determination scenarios 229

SET CURRENT REFRESH AGE ANY
DB20000I The SQL command completed successfully.

Example 4-36 db2exfmt output with MQT

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-07-07-09.47.54.023210
EXPLAIN_REQUESTER: DB2I64

Database Context:

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No

230 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Deletable: No
Query Degree: 1

Original Statement:

select r_name, count(*)
from ora.orders, ora.customer, ora.nation, ora.region
where o_custkey = c_custkey and c_nationkey = n_nationkey and n_regionkey =
 r_regionkey and (char(year(o_orderdate))||char(month(o_orderdate))) >
 ((char(year(current date - 74 months)))||(char(month(current date -74
 months))))
group by r_name

Optimized Statement:

SELECT Q3.$C0 AS "R_NAME", Q3.$C1
FROM
 (SELECT Q2.$C0, SUM(Q2.$C1)
 FROM
 (SELECT Q1.REGION, Q1.COUNT
 FROM DB2I64.ORDERSMQT AS Q1
 WHERE ((CHAR(YEAR(-(CURRENT DATE, 74, 2))) || CHAR(MONTH(-(CURRENT DATE,
 74, 2)))) < Q1.YRMONTH)) AS Q2
 GROUP BY Q2.$C0) AS Q3

Access Plan:

Total Cost: 176.091
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 14.8333
 GRPBY
 (2)
 176.088
 7
 |
 14.8333
 TBSCAN
 (3)
 176.085
 7
 |

 Chapter 4. Performance problem determination scenarios 231

 14.8333
 SORT
 (4)
 176.076
 7
 |
 148.333
 TBSCAN
 (5)
 175.998
 7
 |
 445
 TABLE: DB2I64
 ORDERSMQT

1) RETURN: (Return Result)
Cumulative Total Cost: 176.091
Cumulative CPU Cost: 2.02393e+06
Cumulative I/O Cost: 7
Cumulative Re-Total Cost: 0.963306
Cumulative Re-CPU Cost: 1.78635e+06
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 176.077
Estimated Bufferpool Buffers: 0

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

5) From Operator #2

Estimated number of rows: 14.8333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q4.$C1+Q4.R_NAME

232 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

2) GRPBY : (Group By)
Cumulative Total Cost: 176.088
Cumulative CPU Cost: 2.01688e+06
Cumulative I/O Cost: 7
Cumulative Re-Total Cost: 0.959506
Cumulative Re-CPU Cost: 1.7793e+06
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 176.077
Estimated Bufferpool Buffers: 0

Arguments:

AGGMODE : (Aggregration Mode)

FINAL
GROUPBYC: (Group By columns)

TRUE
GROUPBYN: (Number of Group By columns)

1
GROUPBYR: (Group By requirement)

1: Q2.REGION
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

4) From Operator #3

Estimated number of rows: 14.8333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.REGION(A)+Q2.COUNT

Output Streams:

5) To Operator #1

Estimated number of rows: 14.8333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q4.$C1+Q4.R_NAME

 Chapter 4. Performance problem determination scenarios 233

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 176.085
Cumulative CPU Cost: 2.01292e+06
Cumulative I/O Cost: 7
Cumulative Re-Total Cost: 0.957372
Cumulative Re-CPU Cost: 1.77534e+06
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 176.077
Estimated Bufferpool Buffers: 0

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

3) From Operator #4

Estimated number of rows: 14.8333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.REGION(A)+Q2.COUNT

Output Streams:

4) To Operator #2

Estimated number of rows: 14.8333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.REGION(A)+Q2.COUNT

4) SORT : (Sort)
Cumulative Total Cost: 176.076

234 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative CPU Cost: 1.99536e+06
Cumulative I/O Cost: 7
Cumulative Re-Total Cost: 0.947902
Cumulative Re-CPU Cost: 1.75778e+06
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 176.076
Estimated Bufferpool Buffers: 7

Arguments:

AGGMODE : (Aggregration Mode)

PARTIAL
DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

15
ROWWIDTH: (Estimated width of rows)

41
SORTKEY : (Sort Key column)

1: Q2.REGION(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

2) From Operator #5

Estimated number of rows: 148.333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.COUNT+Q2.REGION

Output Streams:

3) To Operator #3

Estimated number of rows: 14.8333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.REGION(A)+Q2.COUNT

 Chapter 4. Performance problem determination scenarios 235

5) TBSCAN: (Table Scan)
Cumulative Total Cost: 175.998
Cumulative CPU Cost: 1.85042e+06
Cumulative I/O Cost: 7
Cumulative Re-Total Cost: 0.947902
Cumulative Re-CPU Cost: 1.75778e+06
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.6885
Estimated Bufferpool Buffers: 7

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY

Predicates:

3) Sargable Predicate

Relational Operator: Less Than (<)
Subquery Input Required: No
Filter Factor: 0.333333

Predicate Text:

((CHAR(YEAR(-(CURRENT DATE, 74, 2))) ||
 CHAR(MONTH(-(CURRENT DATE, 74, 2)))) <
 Q1.YRMONTH)

Input Streams:

1) From Object DB2I64.ORDERSMQT

Estimated number of rows: 445
Number of columns: 4
Subquery predicate ID: Not Applicable

236 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q1.RID+Q1.COUNT+Q1.REGION+Q1.YRMONTH

Output Streams:

2) To Operator #4

Estimated number of rows: 148.333
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.COUNT+Q2.REGION

Objects Used in Access Plan:

Schema: ORA
Name: CUSTOMER
Type: Nickname (reference only)

Schema: ORA
Name: NATION
Type: Nickname (reference only)

Schema: ORA
Name: ORDERS
Type: Nickname (reference only)

Schema: ORA
Name: REGION
Type: Nickname (reference only)

Schema: DB2I64
Name: ORDERSMQT
Type: Table

Time of creation: 2004-07-06-15.53.07.922469
Last statistics update:
Number of columns: 3
Number of rows: 445
Width of rows: 57
Number of buffer pool pages: 7
Distinct row values: No
Tablespace name: INDEX_TS
Tablespace overhead: 24.100000

 Chapter 4. Performance problem determination scenarios 237

Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 96
Container extent page count: 32
Table overflow record count: 0
Table Active Blocks: -1

Example 4-37 Dynamic SQL snapshot with ORDERSMQT

Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/npart/db2i64/NODE0000/SQL00001/

Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 28
 Best preparation time (ms) = 28
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 401
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 1
 Statement sort overflows = 0
 Total sort time = 13
 Buffer pool data logical reads = 9
 Buffer pool data physical reads = 6
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 0.048358
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.010000
 Statement text = select r_name, count(*)
from ora.orders, ora.customer, ora.nation, ora.region
where o_custkey = c_custkey
and c_nationkey = n_nationkey
and n_regionkey = r_regionkey
and (char(year(o_orderdate))||char(month(o_orderdate))) >
((char(year(current date - 74 months)))||(char(month(current date -74
months))))
group by r_name

238 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Example 4-36 on page 230 shows the query now using ORDERSMQT instead of
the four nicknames. Example 4-37 on page 238 shows the results of executing
the query with routing to the ORDERSMQT in effect.

4.4.5 Incompatible data types on join columns
Table 4-2 on page 158 provides a very high-level overview of conditions under
which one of the three join strategies (nested loop, merge scan, or hash join) is
favored over the other. A key consideration is the join operator involved and
whether the data types, scale, and precision of the joined columns match
perfectly. For example, a join operator other than equality can only result in a
nested loop join, while equality predicates are a must for merge scan and hash
join. Additionally, hash join requires the join columns to match perfectly on data
type, scale, and precision.

In a federated environment, joins can occur between nicknames referencing
different data sources, and the likelihood of data type mismatches between
joined columns is higher because of the default data type mapping that occurs
when a nickname is defined. This can result in hash joins being inhibited
altogether even though it might have been the optimal access paths had the
joined columns matched perfectly.

In this scenario, we highlight such a mismatch that may be the cause of the
performance problem, and describe the steps involved to correct this mismatch
by altering the data type of the joined column.

Triggering event
Users complained about poor response times with a specific query. The users
claimed that they had never really experienced good performance from this
query.

Hypotheses and validations
Here too, since these were user complaints about the performance of a specific
query, as per Figure 4-3 on page 122, we decided to enter the DB2 hypotheses
hierarchy described in Figure 4-1 on page 117 and Example 4.2 on page 119, at
a lower level, bypassing network- and system-related problems, and focused
directly on federated application/query performance as follows.

Note: There is no remote SQL fragment in this output because of the routing,
and because the Total execution time (sec.ms) went from 128.136489
seconds in Example 4-33 on page 212 without routing to 0.048358 seconds
with the routing to ORDERSMQT.

 Chapter 4. Performance problem determination scenarios 239

Hypothesis 1: Federated application/query performance
Before one can investigate the cause of a query’s performance problem, one
needs to identify the query in question. After identifying the query in question,
one can begin diagnosing whether the performance problem is at the federated
server, the remote data source, or equally divided between the two, as discussed
in Example 4.2 on page 119.

� Identify the application and query.

In this case the user specifically identified the query in question as being the
one shown in Example 4-38. It lists all orders (DB2.ORDERS) and the line
items (ORA.LINEITEM) associated wit them.

Example 4-38 Problem query

select * from db2.orders d, ora.lineitem l
where d.o_orderkey = l.l_orderkey

� Determine if the problem is at the federated server or the data source.

Once the problem query has been identified, we need to determine if the
query’s performance problem is at the federated server, the remote data
source, or distributed between both.

This information can be determined from a dynamic SQL snapshot, as
discussed in 4.2.3, “Federated server or remote data source” on page 136.
Example 4-39 on page 240 is a dynamic SQL snapshot, and includes the
problem query (highlighted) in the Statement text field.

Example 4-39 Dynamic SQL snapshot

get snapshot for dynamic sql on fedserv

 Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/npart/db2i64/NODE0000/SQL00001/

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 48
 Best preparation time (ms) = 48
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 59986052
 Internal rows updated = 0
 Rows written = 64157889
 Statement sorts = 2

240 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Statement sort overflows = 2
 Total sort time = 479027
 Buffer pool data logical reads = 6
 Buffer pool data physical reads = 2
 Buffer pool temporary data logical reads = 5653175
 Buffer pool temporary data physical reads = 184
 Buffer pool index logical reads = 7
 Buffer pool index physical reads = 4
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 3338.542900
 Total user cpu time (sec.ms) = 1070.300000
 Total system cpu time (sec.ms) = 58.810000
 Statement text = select * from db2.orders d, ora.lineitem
l where d.o_orderkey = l.l_orderkey

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 59986052
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 1870.848680
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."L_ORDERKEY", A0."L_PARTKEY",
A0."L_SUPPKEY", A0."L_LINENUMBER", A0."L_QUANTITY", A0."L_EXTENDEDPRICE",
A0."L_DISCOUNT",
A0."L_TAX", A0."L_RETURNFLAG", A0."L_LINESTATUS", A0."L_SHIPDATE",
A0."L_COMMITDATE",
A0."L_RECEIPTDATE", A0."L_SHIPINSTRUCT", A0."L_SHIPMODE", A0."L_COMMENT"
FROM "IITEST"."LINEITEM" A0

 Number of executions = 1
 Number of compilations = 1

 Chapter 4. Performance problem determination scenarios 241

 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 15000000
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 333.479573
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."O_ORDERKEY", A0."O_CUSTKEY",
A0."O_ORDERSTATUS", A0."O_TOTALPRICE", A0."O_ORDERDATE", A0."O_ORDERPRIORITY",
A0."O_CLERK", A0."O_SHIPPRIORITY", A0."O_COMMENT" FROM "TPCD"."ORDERS" A0 FOR
READ ONLY

As discussed in 4.2.3, “Federated server or remote data source” on page 136,
since there is no direct mechanism to link the remote SQL fragments in the
dynamic cache with their corresponding user SQL statement, we generated
db2exfmt output for the user query, as shown in Example 4-40, to obtain this
link.

Example 4-40 db2exfmt output for the problem query

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-05-17.38.11.227639
EXPLAIN_REQUESTER: DB2I64

Database Context:

242 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 100000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select *
from db2.orders d, ora.lineitem l
where d.o_orderkey = l.l_orderkey

Optimized Statement:

SELECT Q2.O_ORDERKEY AS "O_ORDERKEY", Q2.O_CUSTKEY AS "O_CUSTKEY",
 Q2.O_ORDERSTATUS AS "O_ORDERSTATUS", Q2.O_TOTALPRICE AS
 "O_TOTALPRICE", Q2.O_ORDERDATE AS "O_ORDERDATE", Q2.O_ORDERPRIORITY
 AS "O_ORDERPRIORITY", Q2.O_CLERK AS "O_CLERK", Q2.O_SHIPPRIORITY AS
 "O_SHIPPRIORITY", Q2.O_COMMENT AS "O_COMMENT", Q1.L_ORDERKEY AS
 "L_ORDERKEY", Q1.L_PARTKEY AS "L_PARTKEY", Q1.L_SUPPKEY AS
 "L_SUPPKEY", Q1.L_LINENUMBER AS "L_LINENUMBER", Q1.L_QUANTITY AS
 "L_QUANTITY", Q1.L_EXTENDEDPRICE AS "L_EXTENDEDPRICE", Q1.L_DISCOUNT
 AS "L_DISCOUNT", Q1.L_TAX AS "L_TAX", Q1.L_RETURNFLAG AS
 "L_RETURNFLAG", Q1.L_LINESTATUS AS "L_LINESTATUS", Q1.L_SHIPDATE AS
 "L_SHIPDATE", Q1.L_COMMITDATE AS "L_COMMITDATE", Q1.L_RECEIPTDATE AS
 "L_RECEIPTDATE", Q1.L_SHIPINSTRUCT AS "L_SHIPINSTRUCT", Q1.L_SHIPMODE

 Chapter 4. Performance problem determination scenarios 243

 AS "L_SHIPMODE", Q1.L_COMMENT AS "L_COMMENT"
FROM ORA.LINEITEM AS Q1, DB2.ORDERS AS Q2
WHERE (Q2.O_ORDERKEY = Q1.L_ORDERKEY)

Access Plan:

Total Cost: 5.24115e+07
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 5.9986e+07
 MSJOIN
 (2)
 5.24115e+07
 7.76669e+06
 /----+----\
 1.5e+07 3.99907
 TBSCAN FILTER
 (3) (7)
 8.27059e+06 4.41229e+07
 1.32619e+06 6.4405e+06
 | |
 1.5e+07 5.99861e+07
 SORT TBSCAN
 (4) (8)
 7.46492e+06 4.41229e+07
 885017 6.4405e+06
 | |
 1.5e+07 5.99861e+07
 SHIP SORT
 (5) (9)
 1.74862e+06 3.91879e+07
 443840 3.71386e+06
 | |
 1.5e+07 5.99861e+07
 NICKNM: DB2 SHIP
 ORDERS (10)
 3.92801e+06
 987218
 |
 5.99861e+07
 NICKNM: ORA
 LINEITEM

244 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

1) RETURN: (Return Result)
Cumulative Total Cost: 5.24115e+07
Cumulative CPU Cost: 9.61945e+11
Cumulative I/O Cost: 7.76669e+06
Cumulative Re-Total Cost: 5.24115e+07
Cumulative Re-CPU Cost: 9.61945e+11
Cumulative Re-I/O Cost: 7.76669e+06
Cumulative First Row Cost: 4.67981e+07
Estimated Bufferpool Buffers: 3.16782e+06
Remote communication cost:5.29733e+07

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

10) From Operator #2

Estimated number of rows: 5.9986e+07
Number of columns: 25
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_COMMENT+Q3.L_SHIPMODE+Q3.L_SHIPINSTRUCT
+Q3.L_RECEIPTDATE+Q3.L_COMMITDATE
+Q3.L_SHIPDATE+Q3.L_LINESTATUS+Q3.L_RETURNFLAG
+Q3.L_TAX+Q3.L_DISCOUNT+Q3.L_EXTENDEDPRICE
+Q3.L_QUANTITY+Q3.L_LINENUMBER+Q3.L_SUPPKEY
+Q3.L_PARTKEY+Q3.L_ORDERKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

2) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 5.24115e+07
Cumulative CPU Cost: 9.61945e+11
Cumulative I/O Cost: 7.76669e+06

 Chapter 4. Performance problem determination scenarios 245

Cumulative Re-Total Cost: 5.24115e+07
Cumulative Re-CPU Cost: 9.61945e+11
Cumulative Re-I/O Cost: 7.76669e+06
Cumulative First Row Cost: 4.67981e+07
Estimated Bufferpool Buffers: 3.16782e+06
Remote communication cost:5.29733e+07

Arguments:

EARLYOUT: (Early Out flag)

NONE
INNERCOL: (Inner Order Columns)

1: Q1.L_ORDERKEY(A)
OUTERCOL: (Outer Order columns)

1: Q2.O_ORDERKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

2) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 6.66667e-08

Predicate Text:

(Q2.O_ORDERKEY = Q1.L_ORDERKEY)

Input Streams:

4) From Operator #3

Estimated number of rows: 1.5e+07
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY(A)+Q2.O_COMMENT
+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS+Q2.O_CUSTKEY

9) From Operator #7

Estimated number of rows: 3.99907
Number of columns: 16

246 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMENT+Q1.L_SHIPMODE
+Q1.L_SHIPINSTRUCT+Q1.L_RECEIPTDATE
+Q1.L_COMMITDATE+Q1.L_SHIPDATE+Q1.L_LINESTATUS
+Q1.L_RETURNFLAG+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINENUMBER+Q1.L_SUPPKEY+Q1.L_PARTKEY

Output Streams:

10) To Operator #1

Estimated number of rows: 5.9986e+07
Number of columns: 25
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_COMMENT+Q3.L_SHIPMODE+Q3.L_SHIPINSTRUCT
+Q3.L_RECEIPTDATE+Q3.L_COMMITDATE
+Q3.L_SHIPDATE+Q3.L_LINESTATUS+Q3.L_RETURNFLAG
+Q3.L_TAX+Q3.L_DISCOUNT+Q3.L_EXTENDEDPRICE
+Q3.L_QUANTITY+Q3.L_LINENUMBER+Q3.L_SUPPKEY
+Q3.L_PARTKEY+Q3.L_ORDERKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 8.27059e+06
Cumulative CPU Cost: 1.60961e+11
Cumulative I/O Cost: 1.32619e+06
Cumulative Re-Total Cost: 805664
Cumulative Re-CPU Cost: 5.1045e+10
Cumulative Re-I/O Cost: 441177
Cumulative First Row Cost: 7.49133e+06
Estimated Bufferpool Buffers: 441177
Remote communication cost:9.60268e+06

Arguments:

JN INPUT: (Join input leg)

OUTER

 Chapter 4. Performance problem determination scenarios 247

MAXPAGES: (Maximum pages for prefetch)
ALL

PREFETCH: (Type of Prefetch)
SEQUENTIAL

SCANDIR : (Scan Direction)
FORWARD

Input Streams:

3) From Operator #4

Estimated number of rows: 1.5e+07
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY(A)+Q2.O_COMMENT
+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS+Q2.O_CUSTKEY

Output Streams:

4) To Operator #2

Estimated number of rows: 1.5e+07
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY(A)+Q2.O_COMMENT
+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS+Q2.O_CUSTKEY

4) SORT : (Sort)
Cumulative Total Cost: 7.46492e+06
Cumulative CPU Cost: 1.09916e+11
Cumulative I/O Cost: 885017
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 441177
Cumulative First Row Cost: 7.46492e+06
Estimated Bufferpool Buffers: 885017
Remote communication cost:9.60268e+06

248 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

15000000
ROWWIDTH: (Estimated width of rows)

112
SORTKEY : (Sort Key column)

1: Q2.O_ORDERKEY(A)
SPILLED : (Pages spilled to bufferpool or disk)

441177
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

2) From Operator #5

Estimated number of rows: 1.5e+07
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_COMMENT+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS+Q2.O_CUSTKEY
+Q2.O_ORDERKEY

Output Streams:

3) To Operator #3

Estimated number of rows: 1.5e+07
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY(A)+Q2.O_COMMENT
+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS+Q2.O_CUSTKEY

 Chapter 4. Performance problem determination scenarios 249

5) SHIP : (Ship)
Cumulative Total Cost: 1.74862e+06
Cumulative CPU Cost: 2.24392e+10
Cumulative I/O Cost: 443840
Cumulative Re-Total Cost: 1.74862e+06
Cumulative Re-CPU Cost: 2.24392e+10
Cumulative Re-I/O Cost: 443840
Cumulative First Row Cost: 25.0079
Estimated Bufferpool Buffers: 443840
Remote communication cost:9.60268e+06

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."O_ORDERKEY", A0."O_CUSTKEY", A0."O_ORDERSTATUS",
A0."O_TOTALPRICE", A0."O_ORDERDATE", A0."O_ORDERPRIORITY", A0."O_CLERK",
A0."O_SHIPPRIORITY", A0."O_COMMENT" FROM "TPCD"."ORDERS" A0 FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object DB2.ORDERS

Estimated number of rows: 1.5e+07
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_COMMENT+Q2.O_SHIPPRIORITY
+Q2.O_CLERK+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS+Q2.O_CUSTKEY
+Q2.O_ORDERKEY

Output Streams:

2) To Operator #4

Estimated number of rows: 1.5e+07
Number of columns: 9

250 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_COMMENT+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS+Q2.O_CUSTKEY
+Q2.O_ORDERKEY

7) FILTER: (Filter)
Cumulative Total Cost: 4.41229e+07
Cumulative CPU Cost: 7.67615e+11
Cumulative I/O Cost: 6.4405e+06
Cumulative Re-Total Cost: 4.935e+06
Cumulative Re-CPU Cost: 2.33455e+11
Cumulative Re-I/O Cost: 2.72664e+06
Cumulative First Row Cost: 3.93068e+07
Estimated Bufferpool Buffers: 2.72664e+06
Remote communication cost:4.33706e+07

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

2) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 6.66667e-08

Predicate Text:

(Q2.O_ORDERKEY = Q1.L_ORDERKEY)

Input Streams:

8) From Operator #8

Estimated number of rows: 5.99861e+07
Number of columns: 16
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMENT+Q1.L_SHIPMODE

 Chapter 4. Performance problem determination scenarios 251

+Q1.L_SHIPINSTRUCT+Q1.L_RECEIPTDATE
+Q1.L_COMMITDATE+Q1.L_SHIPDATE+Q1.L_LINESTATUS
+Q1.L_RETURNFLAG+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINENUMBER+Q1.L_SUPPKEY+Q1.L_PARTKEY

Output Streams:

9) To Operator #2

Estimated number of rows: 3.99907
Number of columns: 16
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMENT+Q1.L_SHIPMODE
+Q1.L_SHIPINSTRUCT+Q1.L_RECEIPTDATE
+Q1.L_COMMITDATE+Q1.L_SHIPDATE+Q1.L_LINESTATUS
+Q1.L_RETURNFLAG+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINENUMBER+Q1.L_SUPPKEY+Q1.L_PARTKEY

8) TBSCAN: (Table Scan)
Cumulative Total Cost: 4.41229e+07
Cumulative CPU Cost: 7.67615e+11
Cumulative I/O Cost: 6.4405e+06
Cumulative Re-Total Cost: 4.935e+06
Cumulative Re-CPU Cost: 2.33455e+11
Cumulative Re-I/O Cost: 2.72664e+06
Cumulative First Row Cost: 3.93068e+07
Estimated Bufferpool Buffers: 2.72664e+06
Remote communication cost:4.33706e+07

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

7) From Operator #9

252 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 5.99861e+07
Number of columns: 16
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMENT+Q1.L_SHIPMODE
+Q1.L_SHIPINSTRUCT+Q1.L_RECEIPTDATE
+Q1.L_COMMITDATE+Q1.L_SHIPDATE+Q1.L_LINESTATUS
+Q1.L_RETURNFLAG+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINENUMBER+Q1.L_SUPPKEY+Q1.L_PARTKEY

Output Streams:

8) To Operator #7

Estimated number of rows: 5.99861e+07
Number of columns: 16
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMENT+Q1.L_SHIPMODE
+Q1.L_SHIPINSTRUCT+Q1.L_RECEIPTDATE
+Q1.L_COMMITDATE+Q1.L_SHIPDATE+Q1.L_LINESTATUS
+Q1.L_RETURNFLAG+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINENUMBER+Q1.L_SUPPKEY+Q1.L_PARTKEY

9) SORT : (Sort)
Cumulative Total Cost: 3.91879e+07
Cumulative CPU Cost: 5.34161e+11
Cumulative I/O Cost: 3.71386e+06
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 2.72664e+06
Cumulative First Row Cost: 3.91879e+07
Estimated Bufferpool Buffers: 3.71386e+06
Remote communication cost:4.33706e+07

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

59986052

 Chapter 4. Performance problem determination scenarios 253

ROWWIDTH: (Estimated width of rows)
176

SORTKEY : (Sort Key column)
1: Q1.L_ORDERKEY(A)

SPILLED : (Pages spilled to bufferpool or disk)
2.72664e+06

TEMPSIZE: (Temporary Table Page Size)
4096

UNIQUE : (Uniqueness required flag)
FALSE

Input Streams:

6) From Operator #10

Estimated number of rows: 5.99861e+07
Number of columns: 16
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_COMMENT+Q1.L_SHIPMODE+Q1.L_SHIPINSTRUCT
+Q1.L_RECEIPTDATE+Q1.L_COMMITDATE
+Q1.L_SHIPDATE+Q1.L_LINESTATUS+Q1.L_RETURNFLAG
+Q1.L_TAX+Q1.L_DISCOUNT+Q1.L_EXTENDEDPRICE
+Q1.L_QUANTITY+Q1.L_LINENUMBER+Q1.L_SUPPKEY
+Q1.L_PARTKEY+Q1.L_ORDERKEY

Output Streams:

7) To Operator #8

Estimated number of rows: 5.99861e+07
Number of columns: 16
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY(A)+Q1.L_COMMENT+Q1.L_SHIPMODE
+Q1.L_SHIPINSTRUCT+Q1.L_RECEIPTDATE
+Q1.L_COMMITDATE+Q1.L_SHIPDATE+Q1.L_LINESTATUS
+Q1.L_RETURNFLAG+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINENUMBER+Q1.L_SUPPKEY+Q1.L_PARTKEY

10) SHIP : (Ship)
Cumulative Total Cost: 3.92801e+06

254 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative CPU Cost: 1.21469e+11
Cumulative I/O Cost: 987218
Cumulative Re-Total Cost: 3.92801e+06
Cumulative Re-CPU Cost: 1.21469e+11
Cumulative Re-I/O Cost: 987218
Cumulative First Row Cost: 25.0079
Estimated Bufferpool Buffers: 987218
Remote communication cost:4.33706e+07

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."L_ORDERKEY", A0."L_PARTKEY", A0."L_SUPPKEY",
A0."L_LINENUMBER", A0."L_QUANTITY", A0."L_EXTENDEDPRICE", A0."L_DISCOUNT",
A0."L_TAX", A0."L_RETURNFLAG", A0."L_LINESTATUS", A0."L_SHIPDATE",
A0."L_COMMITDATE", A0."L_RECEIPTDATE", A0."L_SHIPINSTRUCT", A0."L_SHIPMODE",
A0."L_COMMENT" FROM "IITEST"."LINEITEM" A0

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

5) From Object ORA.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.L_COMMENT+Q1.L_SHIPMODE
+Q1.L_SHIPINSTRUCT+Q1.L_RECEIPTDATE
+Q1.L_COMMITDATE+Q1.L_SHIPDATE+Q1.L_LINESTATUS
+Q1.L_RETURNFLAG+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINENUMBER+Q1.L_SUPPKEY+Q1.L_PARTKEY
+Q1.L_ORDERKEY

Output Streams:

6) To Operator #9

 Chapter 4. Performance problem determination scenarios 255

Estimated number of rows: 5.99861e+07
Number of columns: 16
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_COMMENT+Q1.L_SHIPMODE+Q1.L_SHIPINSTRUCT
+Q1.L_RECEIPTDATE+Q1.L_COMMITDATE
+Q1.L_SHIPDATE+Q1.L_LINESTATUS+Q1.L_RETURNFLAG
+Q1.L_TAX+Q1.L_DISCOUNT+Q1.L_EXTENDEDPRICE
+Q1.L_QUANTITY+Q1.L_LINENUMBER+Q1.L_SUPPKEY
+Q1.L_PARTKEY+Q1.L_ORDERKEY

Objects Used in Access Plan:

Schema: DB2
Name: ORDERS
Type: Nickname

Time of creation: 2004-08-04-21.28.22.800997
Last statistics update:
Number of columns: 9
Number of rows: 15000000
Width of rows: 113
Number of buffer pool pages: 443840
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: LINEITEM
Type: Nickname

Time of creation: 2004-08-04-22.01.51.518653
Last statistics update: 2004-08-04-22.02.08.829324
Number of columns: 16
Number of rows: 59986052
Width of rows: 177
Number of buffer pool pages: 987218
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32

256 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Container extent page count: 32

The RMTQTXT fields of SHIP operators 5 and 10 in Example 4-40 on
page 242 contain the following remote SQL fragment text:

– SHIP operator 5 fragment

SELECT A0."O_ORDERKEY", A0."O_CUSTKEY", A0."O_ORDERSTATUS",
A0."O_TOTALPRICE", A0."O_ORDERDATE", A0."O_ORDERPRIORITY", A0."O_CLERK",
A0."O_SHIPPRIORITY", A0."O_COMMENT" FROM "TPCD"."ORDERS" A0 FOR READ
ONLY

– SHIP operator 10 fragment

SELECT A0."L_ORDERKEY", A0."L_PARTKEY", A0."L_SUPPKEY",
A0."L_LINENUMBER", A0."L_QUANTITY", A0."L_EXTENDEDPRICE",
A0."L_DISCOUNT", A0."L_TAX", A0."L_RETURNFLAG", A0."L_LINESTATUS",
A0."L_SHIPDATE", A0."L_COMMITDATE", A0."L_RECEIPTDATE",
A0."L_SHIPINSTRUCT", A0."L_SHIPMODE", A0."L_COMMENT" FROM
"IITEST"."LINEITEM" A0

These remote SQL fragments are located in the dynamic cache output shown
in Example 4-39 on page 240, and the following information can be gathered:

– Number of executions is 1 for the user-entered query as well as the two
remote SQL fragments.

– Total execution time (sec.ms), which is 3338.542900 seconds for the
user-entered query, and 1870.848680 seconds and 333.479573 seconds
for the two remote fragments, respectively.

– Total user cpu time (sec.ms) and Total system cpu time (sec.ms),
which is 1070.300000 and 58.810000 for the user-entered query, and zero
for the remote SQL fragments.

– Rows read is 59986052 for the user-entered query, which is the number
of rows returned to the user, and 59986052 rows and 15000000 rows for
the two remote SQL fragments, respectively, which indicate the number of
rows returned to the federated server from the remote data sources.

– Other fields of interest include Statement sorts, Statement sort
overflows, and Total sort time, which only apply to the user-entered
query, and all have values 2, 2, and 479027 milliseconds, respectively.

– The buffer pool hit ratio appears to be very good.

We can derive the following information from these metrics:

Note: To obtain the average elapsed and CPU times, as well as the
number of rows returned, you must divide the values shown by the
Number of executions.

 Chapter 4. Performance problem determination scenarios 257

– The average number of rows returned from the remote data source to the
federated server are (59986052 / 1) = 59986052 and (15000000 / 1) =
15000000, respectively.

– The average elapsed time for the user query is (3338.542900 / 1) =
3338.542900 seconds, while that of the remote SQL fragments are
(1870.848680 / 1) =1870.848680 seconds and (333.479573 / 1) =
333.479573, respectively.

The sort time of 479.027 seconds is high as compared to the total time
(1134.214647 seconds) spent at the federated server, as is the occurrence of
sort overflows.

This performance problem therefore needs to be investigated at both the
remote data source and the federated server, as described in 4.2.4,
“Federated server related” on page 152; and 4.2.5, “Remote data source
related” on page 161.

� Remote data source related.

The remote SQL fragments for the problem query show every row in the
orders and line item tables being returned to the federated server. Such a
scan of millions of rows is time consuming, and appropriate tuning strategies
have to be adopted at these remote data sources to improve scan
performance.

� Federated server related.

As discussed in 4.2.4, “Federated server related” on page 152, poor
performance at the federated server may be caused by a number of factors
such as statistics, index information, pushdown, joins, and parallelism.

Each of these factors need to be evaluated in turn to determine the root cause
of a performance problem.

– A review of the number of rows estimated by the DB2 optimizer in
Example 4-40 on page 242 as being returned from the remote data
sources to the federated server, and the actual number of rows returned
(Rows read) from each remote data source in Example 4-39 on page 240
shows no discrepancy, and hence no investigation is needed.

Attention: In our example, given that the total query elapsed time is
3338.542900 seconds, it is clear that two-thirds of the elapsed time of the
query is spent at the remote data source, and one-third at the federated
server. The percent of time spent at the remote data sources is
((1870.848680 + 333.479573) / 3338.542900) = 66%. The time spent at
the federated server is (3338.542900 - (1870.848680 + 333.479573)) =
1134.214647 seconds.

258 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

– A review of the remote SQL fragment texts and the original statement
(Example 4-40 on page 242), which is a join of nicknames across two
different remote data sources, shows that there are no predicates that
need to be investigated from a pushdown perspective.

– The join predicate has to be executed at the federated server because the
joined columns belong to nicknames referencing different remote data
sources.

– db2exfmt output in Example 4-40 on page 242 shows the merge scan join
(MSJOIN operator 2) being performed with an estimated 1.5e+07 rows
from DB2.ORDERS outer table with an estimated 3.99907 rows per row in
the inner table ORA.LINEITEM containing 5.99861e+07 rows. Since the
merge scan requires the two tables to be in sorted order, sorts are
indicated by SORT operator 4 on the DB2.ORDERS table and SORT
operator 9 on the ORA.LINEITEM table.

As indicated earlier, the Total sort time of 479.027 seconds and the Sort
overflows of 2 in Example 4-39 on page 240 merit investigation. However,
the sum of (Total user cpu time (sec.ms) + Total system CPU time
(sec.ms)) is = (1070.300000 + 58.810000) = 1129.11 seconds. This is
almost equal to the 1134.214647 seconds spent at the federated server
and is probably entirely due to the processing of 5.99861e+07 rows.
Unless the number of rows is reduced, the processing time at the
federated server cannot be reduced.

Given the equality predicates (D.ORDERKEY = L.L_ORDERKEY) and the
characteristics of the tables involved in the join (one very large table of
5.99861e+07 rows being joined with a smaller table of approximately
1.5e+07 rows), we investigated why a hash join was not chosen (see
Table 4-2 on page 158) as the preferred access path since sort costs
would potentially be lower (depending upon other considerations such as
SORTHEAP and the buffer pool).

To determine whether there was a data type mismatch inhibiting the
consideration of a hash join as an optimal access path, we ran the query
against the SYSCAT.COLUMNS catalog view, as shown in Example 4-41,
to determine the data types of the join columns.

Example 4-41 Data types for nickname join columns before ALTER

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

 Chapter 4. Performance problem determination scenarios 259

select substr(tabschema,1,8) as tabschema, substr(tabname,1,8) as tabname,
substr(colname,1,15) as colname, substr(typename,1,8) as typename, length,
scale from syscat.columns where (tabschema = 'ORA' and tabname = 'LINEITEM' or
tabschema = 'DB2' and tabname = 'ORDERS') and colname like '%ORDERKEY'

TABSCHEMA TABNAME COLNAME TYPENAME LENGTH SCALE
--------- -------- --------------- -------- ----------- ------
ORA LINEITEM L_ORDERKEY DECIMAL 10 0
DB2 ORDERS O_ORDERKEY INTEGER 4 0

 2 record(s) selected

Example 4-41 shows the join columns to have different data
types—L_ORDERKEY on the LINEITEM nickname is DECIMAL(10,0), while
O_ORDERKEY on the ORDERS nickname is INTEGER.

Root cause of the problem
It appears that there are at least two possible causes of the performance
problem:

� Mismatch of data types possibly resulting in a less optimal join strategy
(merge scan being chosen instead of a hash join)—possibly resulting in sort
costs

� Scan performance at the remote data sources

Apply best practices
Since tuning the remote data sources is beyond the scope of this publication, we
focus here on the mismatch of data types problem.

We recommend the following steps to address the data type mismatch problem:

Note: This is a common issue with Oracle nicknames because Oracle DBAs
tend to define all Oracle numeric columns as NUMBER(), regardless of
whether they are used to store integers, decimals, or real values. In order to
ensure that the nickname data type in DB2 II is able to hold all possible values
that can be contained within an Oracle NUMBER column, the default type
mapping employed is to a DECIMAL(10,0) column. Now, if it is known that the
remote column will only ever hold integers, then it is safe to change this
mapping from DECIMAL to INTEGER. This problem is more pronounced with
Oracle data sources because it is very common for the tables to have columns
defined as NUMBER, rather than using the more precise types like INTEGER,
DECIMAL, etc.

260 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

1. Capture HIGH2KEY and LOW2KEY statistics for the join column whose data
types are to be altered.

This needs to be done before altering the data type because these values are
lost after the ALTER NICKNAME statement is executed.

Example 4-42 shows how to capture the cardinality and HIGH2KEY and
LOW2KEY statistics for the joins column.

Example 4-42 Statistics for nickname join columns before ALTER

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

select substr(tabschema,1,4) as tabschema, substr(tabname,1,8) as tabname, card
from syscat.tables where (tabschema = 'ORA' and tabname = 'LINEITEM' or
tabschema = 'DB2' and tabname = 'ORDERS')

TABSCHEMA TABNAME CARD
--------- -------- --------------------
DB2 ORDERS 15000000
ORA LINEITEM 59986052

 2 record(s) selected.

select substr(tabschema,1,4) as tabschema, substr(tabname,1,8) as tabname,
substr(colname,1,10) as colname, colcard, substr(high2key,1,20) as high2key,
substr(low2key,1,20) as low2key from sysstat.columns where (tabschema = 'ORA'
and tabname = 'LINEITEM' or tabschema = 'DB2' and tabname = 'ORDERS') and
colname like '%ORDERKEY'

TABSCHEMA TABNAME COLNAME COLCARD HIGH2KEY LOW2KEY
--------- -------- ---------- -------------------- -----------------------
DB2 ORDERS O_ORDERKEY 15000000 59999975 2
ORA LINEITEM L_ORDERKEY 15000000 59999975 2

 2 record(s) selected.

2. Alter the data type of one of the join columns using the ALTER NICKNAME
statement.

Example 4-43 shows the L_ORDERKEY column data type being changed to
an INTEGER data type to match that of the O_ORDERKEY.

 Chapter 4. Performance problem determination scenarios 261

Example 4-43 ALTER NICKNAME statement

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

alter nickname ora.lineitem alter column l_orderkey local type integer
DB20000I The SQL command completed successfully.

Example 4-44 on page 262 verifies that the data types of the two columns are
indeed identical now and have the INTEGER data type.

Example 4-44 Data types for nickname join columns after ALTER

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

select substr(tabschema,1,8) as tabschema, substr(tabname,1,8) as tabname,
substr(colname,1,15) as colname, substr(typename,1,8) as typename, length,
scale from syscat.columns where (tabschema = 'ORA' and tabname = 'LINEITEM' or
tabschema = 'DB2' and tabname = 'ORDERS') and colname like '%ORDERKEY'

TABSCHEMA TABNAME COLNAME TYPENAME LENGTH SCALE
--------- -------- --------------- -------- ----------- ------
ORA LINEITEM L_ORDERKEY INTEGER 4 0
DB2 ORDERS O_ORDERKEY INTEGER 4 0

 2 record(s) selected.

Example 4-45 shows the loss of the HIGH2KEY and LOW2KEY values for the
L_ORDERKEY column as a result of the ALTER NICKNAME statement
execution.

Example 4-45 Statistics for nickname join columns after ALTER

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0

262 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

select substr(tabschema,1,4) as tabschema, substr(tabname,1,8) as tabname, card
from syscat.tables where (tabschema = 'ORA' and tabname = 'LINEITEM' or
tabschema = 'DB2' and tabname = 'ORDERS')

TABSCHEMA TABNAME CARD
--------- -------- --------------------
DB2 ORDERS 15000000
ORA LINEITEM 59986052

 2 record(s) selected.

select substr(tabschema,1,4) as tabschema, substr(tabname,1,8) as tabname,
substr(colname,1,10) as colname, colcard, substr(high2key,1,20) as high2key,
substr(low2key,1,20) as low2key from sysstat.columns where (tabschema = 'ORA'
and tabname = 'LINEITEM' or tabschema = 'DB2' and tabname = 'ORDERS') and
colname like '%ORDERKEY'

TABSCHEMA TABNAME COLNAME COLCARD HIGH2KEY LOW2KEY
--------- -------- ---------- -------------------- -----------------------
DB2 ORDERS O_ORDERKEY 15000000 59999975 2
ORA LINEITEM L_ORDERKEY 15000000

 2 record(s) selected.

3. Re-establish the correct values for HIGH2KEY and LOW2KEY for the
L_ORDERKEY column.

Example 4-46 shows the SQL statement for updating the HIGH2KEY and
LOW2KEY values for the L_ORDERKEY with the values that we captured in
Example 4-42 on page 261 prior to altering the data type.

Example 4-46 Manually update HIGH2KEY and LOW2KEY values

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0

Note: When altering a nickname’s local data types, it is the responsibility of
the DBA to ensure that the local data type is able to hold all the values that
are stored in the remote column. Failure to do so could result in
inconsistent results being returned to the application.

 Chapter 4. Performance problem determination scenarios 263

 SQL authorization ID = DB2I64
 Local database alias = FEDSERV

update sysstat.columns set high2key = '59999975', low2key = '2' where colname =
'L_ORDERKEY' and tabname = 'LINEITEM' and tabschema like 'ORA%'
DB20000I The SQL command completed successfully.

4. Run db2exfmt on the query.

Example 4-47 on page 264 shows the db2exfmt output after the data type
mismatch was removed. The Access Plan section shows a hash join (HSJOIN
operator 3) being chosen, and the Total Cost being estimated to be
5.86806e+06 timerons, which is less than the merge scan join selection
estimate of 5.24115e+07 timerons in Example 4-40 on page 242.

The technique of altering the local type, length/precision, and scale of the
nickname column is only valid if:

� The new type is compatible with the existing type.

� The new type, with its length/precision, and scale, will not cause value
truncation or padding that makes results of the query invalid.

In this example, altering the nickname column local type is valid since:

� Both decimal(10,0) and integer hold numeric values that are compatible.

� Decimal(10,0) has scale=0 and so can hold only whole values, just like
integer.

� Decimal(10,0) with precision=10 holds values whose maximum length (10
digits) is same as integer, so no part of the values will be truncated and there
will be no padding when the decimal values are converted to integer.

Other techniques are described in “Nickname-related best practices” on
page 109.

Since tuning tends to be a trial-and-error iterative process, it is more than likely
that some of the options suggested could lead to other performance problems
that would need to be investigated and resolved.

Example 4-47 db2exfmt of problem query after fixing mismatched data types

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002

Attention: In the final analysis, what really matters is not what the DB2
optimizer estimates to be the optimal access path based on timerons, but
the actual run times experienced by the user.

264 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-04-21.42.08.693004
EXPLAIN_REQUESTER: DB2I64

Database Context:

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 100000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select count(*)
from db2.orders d, ora.lineitem l
where d.o_orderkey = l.l_orderkey

 Chapter 4. Performance problem determination scenarios 265

Optimized Statement:

SELECT Q4.$C0
FROM
 (SELECT COUNT(*)
 FROM
 (SELECT RID
 FROM ORA.LINEITEM AS Q1, DB2.ORDERS AS Q2
 WHERE (Q2.O_ORDERKEY = Q1.L_ORDERKEY)) AS Q3) AS Q4

Access Plan:

Total Cost: 5.86806e+06
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 1
 GRPBY
 (2)
 5.86806e+06
 1.45897e+06
 |
 5.99861e+07
 HSJOIN
 (3)
 5.85997e+06
 1.45897e+06
 /------+-----\
 5.99861e+07 1.5e+07
 SHIP SHIP
 (4) (6)
 3.8814e+06 1.74195e+06
 987218 443840
 | |
 5.99861e+07 1.5e+07
 NICKNM: ORA NICKNM: DB2
 LINEITEM ORDERS

1) RETURN: (Return Result)

266 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative Total Cost: 5.86806e+06
Cumulative CPU Cost: 7.96331e+10
Cumulative I/O Cost: 1.45897e+06
Cumulative Re-Total Cost: 5.86806e+06
Cumulative Re-CPU Cost: 7.96331e+10
Cumulative Re-I/O Cost: 1.45897e+06
Cumulative First Row Cost: 5.86806e+06
Estimated Bufferpool Buffers: 1.44571e+06
Remote communication cost:3.88231e+07

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

6) From Operator #2

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.$C0

2) GRPBY : (Group By)
Cumulative Total Cost: 5.86806e+06
Cumulative CPU Cost: 7.96331e+10
Cumulative I/O Cost: 1.45897e+06
Cumulative Re-Total Cost: 5.86806e+06
Cumulative Re-CPU Cost: 7.96331e+10
Cumulative Re-I/O Cost: 1.45897e+06
Cumulative First Row Cost: 5.86806e+06
Estimated Bufferpool Buffers: 1.44571e+06
Remote communication cost:3.88231e+07

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

FALSE

 Chapter 4. Performance problem determination scenarios 267

GROUPBYN: (Number of Group By columns)
0

ONEFETCH: (One Fetch flag)
FALSE

Input Streams:

5) From Operator #3

Estimated number of rows: 5.99861e+07
Number of columns: 0
Subquery predicate ID: Not Applicable

Output Streams:

6) To Operator #1

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.$C0

3) HSJOIN: (Hash Join)
Cumulative Total Cost: 5.85997e+06
Cumulative CPU Cost: 6.46366e+10
Cumulative I/O Cost: 1.45897e+06
Cumulative Re-Total Cost: 5.85997e+06
Cumulative Re-CPU Cost: 6.46366e+10
Cumulative Re-I/O Cost: 1.45897e+06
Cumulative First Row Cost: 5.85997e+06
Estimated Bufferpool Buffers: 1.44571e+06
Remote communication cost:3.88231e+07

Arguments:

BITFLTR : (Hash Join Bit Filter used)

FALSE
EARLYOUT: (Early Out flag)

LEFT
HASHCODE: (Hash Code Size)

24 BIT
TEMPSIZE: (Temporary Table Page Size)

4096

268 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Predicates:

2) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 6.66667e-08

Predicate Text:

(Q2.O_ORDERKEY = Q1.L_ORDERKEY)

Input Streams:

2) From Operator #4

Estimated number of rows: 5.99861e+07
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY

4) From Operator #6

Estimated number of rows: 1.5e+07
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY

Output Streams:

5) To Operator #2

Estimated number of rows: 5.99861e+07
Number of columns: 0
Subquery predicate ID: Not Applicable

4) SHIP : (Ship)
Cumulative Total Cost: 3.8814e+06
Cumulative CPU Cost: 3.50356e+10
Cumulative I/O Cost: 987218
Cumulative Re-Total Cost: 3.8814e+06

 Chapter 4. Performance problem determination scenarios 269

Cumulative Re-CPU Cost: 3.50356e+10
Cumulative Re-I/O Cost: 987218
Cumulative First Row Cost: 25.0079
Estimated Bufferpool Buffers: 987218
Remote communication cost:3.10711e+07

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."L_ORDERKEY" FROM "IITEST"."LINEITEM" A0
SRCSEVER: (Source (ship from) server)

ORASERV
STREAM : (Remote stream)

FALSE

Input Streams:

1) From Object ORA.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.L_ORDERKEY

Output Streams:

2) To Operator #3

Estimated number of rows: 5.99861e+07
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q1.L_ORDERKEY

6) SHIP : (Ship)
Cumulative Total Cost: 1.74195e+06

270 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative CPU Cost: 1.00656e+10
Cumulative I/O Cost: 443840
Cumulative Re-Total Cost: 1.74195e+06
Cumulative Re-CPU Cost: 1.00656e+10
Cumulative Re-I/O Cost: 443840
Cumulative First Row Cost: 25.0079
Estimated Bufferpool Buffers: 443840
Remote communication cost:7.75204e+06

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT A0."O_ORDERKEY" FROM "TPCD"."ORDERS" A0 FOR READ ONLY
SRCSEVER: (Source (ship from) server)

DB2SERV
STREAM : (Remote stream)

FALSE

Input Streams:

3) From Object DB2.ORDERS

Estimated number of rows: 1.5e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_ORDERKEY

Output Streams:

4) To Operator #3

Estimated number of rows: 1.5e+07
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_ORDERKEY

 Chapter 4. Performance problem determination scenarios 271

Objects Used in Access Plan:

Schema: DB2
Name: ORDERS
Type: Nickname

Time of creation: 2004-08-04-21.28.22.800997
Last statistics update:
Number of columns: 9
Number of rows: 15000000
Width of rows: 16
Number of buffer pool pages: 443840
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: LINEITEM
Type: Nickname

Time of creation: 2004-08-04-21.35.47.856522
Last statistics update: 2004-08-04-21.41.05.553007
Number of columns: 16
Number of rows: 59986052
Width of rows: 35
Number of buffer pool pages: 987218
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

4.4.6 Pushdown problems
The DB2_MAXIMAL_PUSHDOWN server option allows the user or DBA to direct
the optimizer to choose an access plan based on cost or have as much query
processing as possible be performed by the remote data sources. With the
default setting of DB2_MAXIMAL_PUSHDOWN of ‘N’, the optimizer is directed to
choose an access plan based on cost optimization.

272 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

In this scenario, we diagnose how the default setting of the
DB2_MAXIMAL_PUSHDOWN server option may inhibit a particular federated
query (about which the user has additional domain expertise) from achieving
superior performance.

Triggering event
Users complained about poor response times with a specific query.

Hypotheses and validations
Here again, since these were user complaints about the performance of a
specific query, as per Figure 4-3 on page 122, we decided to enter the DB2
hypotheses hierarchy shown in Figure 4-1 on page 117 and described in
Example 4.2 on page 119, at a lower level, bypassing network- and
system-related problems, and focused directly on federated application/query
performance, as follows.

Hypothesis 1: Federated application/query performance
Before one can investigate the cause of a query’s performance problem, one
needs to identify the query in question. After identifying the query in question,
one can begin diagnosing whether the performance problem is at the federated
server, the remote data source, or equally divided between the two, as discussed
in Example 4.2 on page 119.

� Identify the application and query.

In this case the user specifically identified the query in question as being the
one shown in Example 4-48. It finds which supplier should be selected to
place an order for a given (brass, size 15) part in a given region (Europe)
based on the minimum supplier cost. The parts, supplier, and parts supplier
tables reside on DB2, while the nation and region tables reside on Oracle.

Example 4-48 Problem query

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE,
S_COMMENT
FROM db2.PART, db2.SUPPLIER, db2.PARTSUPP, ora.NATION, ora.REGION
WHERE P_PARTKEY = PS_PARTKEY AND

S_SUPPKEY = PS_SUPPKEY AND
P_SIZE = 15 AND
P_TYPE LIKE '%BRASS' AND
S_NATIONKEY = N_NATIONKEY AND
R_NAME = 'EUROPE' AND
PS_SUPPLYCOST =

(SELECT MIN(PS_SUPPLYCOST)
FROM db2.PARTSUPP, db2.SUPPLIER, ora.NATION, ora.REGION
WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND
S_NATIONKEY = N_NATIONKEY AND

 Chapter 4. Performance problem determination scenarios 273

N_REGIONKEY = R_REGIONKEY AND
R_NAME = 'EUROPE')

ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY
FETCH FIRST 100 ROWS ONLY

� Determine if the problem is at the Federated server or the data source.

Once the problem query has been identified, we need to determine if the
query’s performance problem is at the federated server, the remote data
source, or distributed between both.

This information can be determined from a dynamic SQL snapshot, as
discussed in 4.2.3, “Federated server or remote data source” on page 136.
Example 4-49 is a dynamic SQL snapshot, and includes the problem query
(highlighted) in the Statement text field.

Example 4-49 Dynamic SQL snapshot

get snapshot for dynamic sql on fedserv

 Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/npart/db2i64/NODE0000/SQL00001/

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 142
 Best preparation time (ms) = 142
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 100
 Internal rows updated = 0
 Rows written = 4668
 Statement sorts = 62833
 Statement sort overflows = 1
 Total sort time = 13
 Buffer pool data logical reads = 6
 Buffer pool data physical reads = 1
 Buffer pool temporary data logical reads = 292
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 7
 Buffer pool index physical reads = 3
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 80.444751
 Total user cpu time (sec.ms) = 9.920000
 Total system cpu time (sec.ms) = 1.980000

274 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Statement text = SELECT S_ACCTBAL, S_NAME, N_NAME,
P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT FROM db2.PART, db2.SUPPLIER,
db2.PARTSUPP, ora.NATION, ora.REGION WHERE P_PARTKEY = PS_PARTKEY AND
S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15 AND P_TYPE LIKE '%BRASS' AND
S_NATIONKEY = N_NATIONKEY AND R_NAME = 'EUROPE' AND PS_SUPPLYCOST = (SELECT
MIN(PS_SUPPLYCOST) FROM db2.PARTSUPP, db2.SUPPLIER, ora.NATION, ora.REGION
WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND S_NATIONKEY =
N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY AND R_NAME = 'EUROPE') ORDER BY
S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY FETCH FIRST 100 ROWS ONLY

 Number of executions = 4668
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 4668
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 0.038954
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."N_NAME" FROM "IITEST"."NATION"
A0 WHERE (:H0 = A0."N_NATIONKEY")

 Number of executions = 100
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 100
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0

 Chapter 4. Performance problem determination scenarios 275

 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 0.001376
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT '1' FROM "IITEST"."REGION" A0
WHERE (A0."R_NAME" = 'EUROPE ')

 Number of executions = 31416
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 157080
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 0.366647
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A1."N_NATIONKEY" FROM
"IITEST"."REGION" A0, "IITEST"."NATION" A1 WHERE (A0."R_NAME" = 'EUROPE
') AND (A1."N_REGIONKEY" = A0."R_REGIONKEY")

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 31416
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0

276 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 11.783489
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."P_PARTKEY", A0."P_MFGR",
A1."PS_SUPPKEY", A1."PS_SUPPLYCOST" FROM "TPCD"."PART" A0, "TPCD"."PARTSUPP" A1
WHERE (A0."P_SIZE" = 15) AND (A0."P_TYPE" LIKE '%BRASS') AND (A0."P_PARTKEY" =
A1."PS_PARTKEY") FOR READ ONLY

 Number of executions = 31416
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 125664
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 1.162904
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."PS_SUPPLYCOST",
A1."S_NATIONKEY" FROM "TPCD"."PARTSUPP" A0, "TPCD"."SUPPLIER" A1 WHERE (:H0 =
A0."PS_PARTKEY") AND (A1."S_SUPPKEY" = A0."PS_SUPPKEY") FOR READ ONLY

 Number of executions = 4668
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 4668

 Chapter 4. Performance problem determination scenarios 277

 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 0.175913
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."S_NATIONKEY", A0."S_ACCTBAL",
A0."S_NAME", A0."S_ADDRESS", A0."S_PHONE", A0."S_COMMENT" FROM
"TPCD"."SUPPLIER" A0 WHERE (A0."S_SUPPKEY" = :H0) ORDER BY A0."S_SUPPKEY" ASC,
1 ASC FOR READ ONLY

As discussed in 4.2.3, “Federated server or remote data source” on page 136,
since there is no direct mechanism to link the remote SQL fragments in the
dynamic cache with their corresponding user SQL statement, we generated
db2exfmt output for the user query, as shown in Example 4-50, to obtain this
link.

Example 4-50 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘N’

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-06-16.09.22.205228
EXPLAIN_REQUESTER: DB2I64

Database Context:

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 100000

278 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE,
 S_COMMENT
FROM db2.PART, db2.SUPPLIER, db2.PARTSUPP, ora.NATION, ora.REGION
WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15 AND
 P_TYPE LIKE '%BRASS' AND S_NATIONKEY = N_NATIONKEY AND R_NAME =
 'EUROPE' AND PS_SUPPLYCOST =
 (SELECT MIN(PS_SUPPLYCOST)
 FROM db2.PARTSUPP, db2.SUPPLIER, ora.NATION, ora.REGION
 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND S_NATIONKEY =
 N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY AND R_NAME = 'EUROPE')
ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY
FETCH FIRST 100 ROWS ONLY

Optimized Statement:

SELECT Q10.S_ACCTBAL AS "S_ACCTBAL", Q10.S_NAME AS "S_NAME", Q8.N_NAME AS
 "N_NAME", Q11.P_PARTKEY AS "P_PARTKEY", Q11.P_MFGR AS "P_MFGR",
 Q10.S_ADDRESS AS "S_ADDRESS", Q10.S_PHONE AS "S_PHONE", Q10.S_COMMENT
 AS "S_COMMENT"
FROM
 (SELECT MIN(Q5.$C0)
 FROM
 (SELECT Q4.PS_SUPPLYCOST

 Chapter 4. Performance problem determination scenarios 279

 FROM ORA.REGION AS Q1, ORA.NATION AS Q2, DB2.SUPPLIER AS Q3,
 DB2.PARTSUPP AS Q4
 WHERE (Q1.R_NAME = 'EUROPE ') AND (Q2.N_REGIONKEY = Q1.R_REGIONKEY) AND
 (Q3.S_NATIONKEY = Q2.N_NATIONKEY) AND (Q3.S_SUPPKEY =
 Q4.PS_SUPPKEY) AND (Q11.P_PARTKEY = Q4.PS_PARTKEY)) AS Q5) AS
 Q6, ORA.REGION AS Q7, ORA.NATION AS Q8, DB2.PARTSUPP AS Q9,
 DB2.SUPPLIER AS Q10, DB2.PART AS Q11
WHERE (Q9.PS_SUPPLYCOST = Q6.$C0) AND (Q7.R_NAME = 'EUROPE ') AND
 (Q10.S_NATIONKEY = Q8.N_NATIONKEY) AND (Q11.P_TYPE LIKE '%BRASS') AND
 (Q11.P_SIZE = 15) AND (Q10.S_SUPPKEY = Q9.PS_SUPPKEY) AND
 (Q11.P_PARTKEY = Q9.PS_PARTKEY)
ORDER BY Q10.S_ACCTBAL DESC, Q8.N_NAME, Q10.S_NAME, Q11.P_PARTKEY

Access Plan:

Total Cost: 696955
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 0.41902
 NLJOIN
 (2)
 696955
 27710.2
 /----+---\
 0.41902 1
 TBSCAN SHIP
 (3) (33)
 696955 0.0047045
 27710.2 0
 | |
 0.41902 5
 SORT NICKNM: ORA
 (4) REGION
 696955
 27710.2
 |
 0.41902
 NLJOIN
 (5)
 696955
 27710.2
 /-----------+----------\
 0.41902 1

280 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 NLJOIN SHIP
 (6) (31)
 696955 0.00680492
 27710.2 0
 /----------+----------\ |
 0.41902 1 25
 NLJOIN SHIP NICKNM: ORA
 (7) (28) NATION
 696880 75.0287
 27707.2 3
 /--------+-------\ |
 36042.4 1.16257e-05 100000
 SHIP FILTER NICKNM: DB2
 (8) (12) SUPPLIER
 692609 275.131
 27696.2 11
 /------+-----\ |
 2e+06 8e+06 1
 NICKNM: DB2 NICKNM: DB2 GRPBY
 PART PARTSUPP (13)
 275.13
 11
 |
 0.8
 MSJOIN
 (14)
 275.13
 11
 /--------+--------\
 4 0.2
 TBSCAN FILTER
 (15) (21)
 275.103 0.0247592
 11 0
 | |
 4 5
 SORT TBSCAN
 (16) (22)
 275.1 0.0247592
 11 0
 | |
 4 5
 SHIP SORT
 (17) (23)
 275.097 0.021261
 11 0
 /------+-----\ |
 100000 8e+06 5
 NICKNM: DB2 NICKNM: DB2 SHIP

 Chapter 4. Performance problem determination scenarios 281

 SUPPLIER PARTSUPP (24)
 0.0180496
 0
 /------+-----\
 5 25
 NICKNM: ORA NICKNM: ORA
 REGION NATION

1) RETURN: (Return Result)
Cumulative Total Cost: 696955
Cumulative CPU Cost: 7.78946e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 4107.72
Cumulative Re-CPU Cost: 7.61733e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696955
Estimated Bufferpool Buffers: 1
Remote communication cost:20278.7

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

29) From Operator #2

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)
+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

2) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696955
Cumulative CPU Cost: 7.78946e+09

282 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 4107.72
Cumulative Re-CPU Cost: 7.61733e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696955
Estimated Bufferpool Buffers: 1
Remote communication cost:20278.7

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Input Streams:

26) From Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

28) From Operator #33

Estimated number of rows: 1
Number of columns: 0
Subquery predicate ID: Not Applicable

Output Streams:

29) To Operator #1

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)

 Chapter 4. Performance problem determination scenarios 283

+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 696955
Cumulative CPU Cost: 7.78945e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 4107.72
Cumulative Re-CPU Cost: 7.61732e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696955
Estimated Bufferpool Buffers: 0
Remote communication cost:20272.5

Arguments:

JN INPUT: (Join input leg)

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

25) From Operator #4

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

Output Streams:

26) To Operator #2

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

284 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

4) SORT : (Sort)
Cumulative Total Cost: 696955
Cumulative CPU Cost: 7.78945e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 4107.71
Cumulative Re-CPU Cost: 7.61732e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696955
Estimated Bufferpool Buffers: 27701.2
Remote communication cost:20272.5

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

1
ROWWIDTH: (Estimated width of rows)

204
SORTKEY : (Sort Key column)

1: Q10.S_ACCTBAL(D)
SORTKEY : (Sort Key column)

2: Q8.N_NAME(A)
SORTKEY : (Sort Key column)

3: Q10.S_NAME(A)
SORTKEY : (Sort Key column)

4: Q11.P_PARTKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

24) From Operator #5

Estimated number of rows: 0.41902
Number of columns: 12
Subquery predicate ID: Not Applicable

Column Names:

 Chapter 4. Performance problem determination scenarios 285

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q9.PS_SUPPKEY+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

Output Streams:

25) To Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

5) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696955
Cumulative CPU Cost: 7.78945e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 4107.71
Cumulative Re-CPU Cost: 7.61732e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696955
Estimated Bufferpool Buffers: 27701.2
Remote communication cost:20272.5

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

4) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

286 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

(Q10.S_NATIONKEY = Q8.N_NATIONKEY)

Input Streams:

21) From Operator #6

Estimated number of rows: 0.41902
Number of columns: 11
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

23) From Operator #31

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

Output Streams:

24) To Operator #4

Estimated number of rows: 0.41902
Number of columns: 12
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q9.PS_SUPPKEY+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

6) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696955
Cumulative CPU Cost: 7.78943e+09

 Chapter 4. Performance problem determination scenarios 287

Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 4107.71
Cumulative Re-CPU Cost: 7.61731e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696955
Estimated Bufferpool Buffers: 27700.2
Remote communication cost:20266.3

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE
JN INPUT: (Join input leg)

OUTER

Predicates:

7) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1e-05

Predicate Text:

(Q10.S_SUPPKEY = Q9.PS_SUPPKEY)

Input Streams:

18) From Operator #7

Estimated number of rows: 0.41902
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q11.P_MFGR+Q11.P_PARTKEY

20) From Operator #28

Estimated number of rows: 1
Number of columns: 7
Subquery predicate ID: Not Applicable

288 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q10.S_SUPPKEY(A)+Q10.S_NATIONKEY(A)
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL

Output Streams:

21) To Operator #5

Estimated number of rows: 0.41902
Number of columns: 11
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

7) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696880
Cumulative CPU Cost: 7.78938e+09
Cumulative I/O Cost: 27707.2
Cumulative Re-Total Cost: 4107.69
Cumulative Re-CPU Cost: 7.61728e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696880
Estimated Bufferpool Buffers: 27697.2
Remote communication cost:20260.1

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE
JN INPUT: (Join input leg)

OUTER

Predicates:

2) Predicate used in Join

 Chapter 4. Performance problem determination scenarios 289

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

Input Streams:

3) From Operator #8

Estimated number of rows: 36042.4
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY+Q11.P_MFGR
+Q11.P_PARTKEY

17) From Operator #12

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

Output Streams:

18) To Operator #6

Estimated number of rows: 0.41902
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q11.P_MFGR+Q11.P_PARTKEY

8) SHIP : (Ship)
Cumulative Total Cost: 692609

290 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative CPU Cost: 3.79842e+08
Cumulative I/O Cost: 27696.2
Cumulative Re-Total Cost: 112.05
Cumulative Re-CPU Cost: 2.07785e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 151.483
Estimated Bufferpool Buffers: 27697.2
Remote communication cost:20237.9

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."P_PARTKEY", A0."P_MFGR", A1."PS_SUPPKEY",
A1."PS_SUPPLYCOST" FROM "TPCD"."PART" A0, "TPCD"."PARTSUPP" A1 WHERE
(A0."P_SIZE" = 15) AND (A0."P_TYPE" LIKE '%BRASS') AND (A0."P_PARTKEY" =
A1."PS_PARTKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object DB2.PART

Estimated number of rows: 2e+06
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q11.RID+Q11.P_MFGR+Q11.P_TYPE+Q11.P_SIZE
+Q11.P_PARTKEY

2) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q9.RID+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY

 Chapter 4. Performance problem determination scenarios 291

+Q9.PS_PARTKEY

Output Streams:

3) To Operator #7

Estimated number of rows: 36042.4
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY+Q11.P_MFGR
+Q11.P_PARTKEY

12) FILTER: (Filter)
Cumulative Total Cost: 275.131
Cumulative CPU Cost: 242977
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.131
Cumulative Re-CPU Cost: 242977
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.131
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

2) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

Input Streams:

16) From Operator #13

292 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

Output Streams:

17) To Operator #7

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

13) GRPBY : (Group By)
Cumulative Total Cost: 275.13
Cumulative CPU Cost: 241642
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.13
Cumulative Re-CPU Cost: 241642
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.13
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

FALSE
GROUPBYN: (Number of Group By columns)

0
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

15) From Operator #14

Estimated number of rows: 0.8

 Chapter 4. Performance problem determination scenarios 293

Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

Output Streams:

16) To Operator #12

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

14) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 275.13
Cumulative CPU Cost: 241192
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.13
Cumulative Re-CPU Cost: 241192
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.13
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

EARLYOUT: (Early Out flag)

NONE
INNERCOL: (Inner Order Columns)

1: Q2.N_NATIONKEY(A)
OUTERCOL: (Outer Order columns)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

11) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

294 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

Input Streams:

8) From Operator #15

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

14) From Operator #21

Estimated number of rows: 0.2
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

15) To Operator #13

Estimated number of rows: 0.8
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

15) TBSCAN: (Table Scan)
Cumulative Total Cost: 275.103
Cumulative CPU Cost: 191030
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0566
Cumulative Re-CPU Cost: 104891
Cumulative Re-I/O Cost: 0

 Chapter 4. Performance problem determination scenarios 295

Cumulative First Row Cost: 275.101
Estimated Bufferpool Buffers: 0
Remote communication cost:10.8594

Arguments:

JN INPUT: (Join input leg)

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

7) From Operator #16

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

Output Streams:

8) To Operator #14

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

16) SORT : (Sort)
Cumulative Total Cost: 275.1
Cumulative CPU Cost: 185333
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0535
Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 275.1

296 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

4
ROWWIDTH: (Estimated width of rows)

16
SORTKEY : (Sort Key column)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

6) From Operator #17

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

Output Streams:

7) To Operator #15

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

17) SHIP : (Ship)
Cumulative Total Cost: 275.097
Cumulative CPU Cost: 180037
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0535

 Chapter 4. Performance problem determination scenarios 297

Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 125.05
Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."PS_SUPPLYCOST", A1."S_NATIONKEY" FROM "TPCD"."PARTSUPP"
A0, "TPCD"."SUPPLIER" A1 WHERE (:H0 = A0."PS_PARTKEY") AND (A1."S_SUPPKEY" =
A0."PS_SUPPKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

4) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q4.RID+Q4.PS_SUPPLYCOST+Q4.PS_SUPPKEY
+Q4.PS_PARTKEY

5) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q3.RID+Q3.S_NATIONKEY+Q3.S_SUPPKEY

Output Streams:

6) To Operator #16

298 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

21) FILTER: (Filter)
Cumulative Total Cost: 0.0247592
Cumulative CPU Cost: 45913.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.0103888
Cumulative Re-CPU Cost: 19265
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.022036
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

11) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

Input Streams:

13) From Operator #22

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

 Chapter 4. Performance problem determination scenarios 299

Output Streams:

14) To Operator #14

Estimated number of rows: 0.2
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

22) TBSCAN: (Table Scan)
Cumulative Total Cost: 0.0247592
Cumulative CPU Cost: 45913.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.0103888
Cumulative Re-CPU Cost: 19265
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.022036
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

12) From Operator #23

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

300 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

13) To Operator #21

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

23) SORT : (Sort)
Cumulative Total Cost: 0.021261
Cumulative CPU Cost: 39426.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00689066
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.021261
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

5
ROWWIDTH: (Estimated width of rows)

12
SORTKEY : (Sort Key column)

1: Q2.N_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

11) From Operator #24

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY

 Chapter 4. Performance problem determination scenarios 301

Output Streams:

12) To Operator #22

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

24) SHIP : (Ship)
Cumulative Total Cost: 0.0180496
Cumulative CPU Cost: 33471
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00689066
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0103301
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A1."N_NATIONKEY" FROM "IITEST"."REGION" A0, "IITEST"."NATION"
A1 WHERE (A0."R_NAME" = 'EUROPE ') AND (A1."N_REGIONKEY" =
A0."R_REGIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

9) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

302 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q1.RID+Q1.R_NAME+Q1.R_REGIONKEY

10) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.N_REGIONKEY+Q2.N_NATIONKEY

Output Streams:

11) To Operator #23

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY

28) SHIP : (Ship)
Cumulative Total Cost: 75.0287
Cumulative CPU Cost: 53193.6
Cumulative I/O Cost: 3
Cumulative Re-Total Cost: 50.021
Cumulative Re-CPU Cost: 38888.6
Cumulative Re-I/O Cost: 2
Cumulative First Row Cost: 75.0271
Estimated Bufferpool Buffers: 4520
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

 Chapter 4. Performance problem determination scenarios 303

SELECT A0."S_NATIONKEY", A0."S_ACCTBAL", A0."S_NAME", A0."S_ADDRESS",
A0."S_PHONE", A0."S_COMMENT" FROM "TPCD"."SUPPLIER" A0 WHERE (A0."S_SUPPKEY" =
:H0) ORDER BY A0."S_SUPPKEY" ASC, 1 ASC FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

19) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL

Output Streams:

20) To Operator #6

Estimated number of rows: 1
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_SUPPKEY(A)+Q10.S_NATIONKEY(A)
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL

31) SHIP : (Ship)
Cumulative Total Cost: 0.00680492
Cumulative CPU Cost: 12619
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00448071
Cumulative Re-CPU Cost: 8309
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0055959
Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

304 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT A0."N_NAME" FROM "IITEST"."NATION" A0 WHERE (:H0 =
A0."N_NATIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

22) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q8.RID+Q8.N_NAME+Q8.N_NATIONKEY

Output Streams:

23) To Operator #5

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

33) SHIP : (Ship)
Cumulative Total Cost: 0.0047045
Cumulative CPU Cost: 8724
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00240995
Cumulative Re-CPU Cost: 4469
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00352514

 Chapter 4. Performance problem determination scenarios 305

Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT '1' FROM "IITEST"."REGION" A0 WHERE (A0."R_NAME" = 'EUROPE
')

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

27) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.RID+Q7.R_NAME

Output Streams:

28) To Operator #2

Estimated number of rows: 1
Number of columns: 0
Subquery predicate ID: Not Applicable

Objects Used in Access Plan:

Schema: DB2I64
Name: ORDERSMQT
Type: Materialized View (reference only)

Schema: DB2

306 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Name: PART
Type: Nickname

Time of creation: 2004-06-17-10.42.49.959240
Last statistics update:
Number of columns: 9
Number of rows: 2000000
Width of rows: 70
Number of buffer pool pages: 76238
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: DB2
Name: PARTSUPP
Type: Nickname

Time of creation: 2004-06-17-10.42.55.831083
Last statistics update:
Number of columns: 5
Number of rows: 8000000
Width of rows: 28
Number of buffer pool pages: 319290
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: DB2
Name: SUPPLIER
Type: Nickname

Time of creation: 2004-06-17-10.42.53.722466
Last statistics update:
Number of columns: 7
Number of rows: 100000
Width of rows: 157
Number of buffer pool pages: 4093
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

 Chapter 4. Performance problem determination scenarios 307

Schema: ORA
Name: NATION
Type: Nickname

Time of creation: 2004-06-16-23.22.43.109494
Last statistics update:
Number of columns: 4
Number of rows: 25
Width of rows: 62
Number of buffer pool pages: 15
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: REGION
Type: Nickname

Time of creation: 2004-06-16-23.22.43.342734
Last statistics update:
Number of columns: 3
Number of rows: 5
Width of rows: 56
Number of buffer pool pages: 15
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

There are six SHIP operators (8, 17, 24, 28, 31 and 33) in which the
RMTQTXT fields identify the user query’s corresponding remote SQL
fragments. These are highlighted in SHIP operator 5 in Example 4-50 on
page 278.

These remote SQL fragments are located in the dynamic cache output shown
in Example 4-49 on page 274, and the following information can be gathered:

– Number of executions is 1 for the user-entered query and varying
number of executions for each of the six remote SQL fragments.

– Total execution time (sec.ms), which is 80.444751 seconds for the
user-entered query, and varying times (all of which are fractions of
seconds per execution) for each of the six remote SQL fragments.

308 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

– Total user cpu time (sec.ms) and Total system cpu time (sec.ms),
which are 9.920000 and 1.980000 for the user-entered query, and zero for
the remote SQL fragments.

– Rows read is 100 for the user-entered query, which is the number of rows
returned to the user, and varying number of rows for each of the remote
SQL fragments, which indicates the number of rows returned to the
federated server from the particular remote data source.

– Other fields of interest include Statement sorts, Statement sort
overflows, and Total sort time, which only apply to the user-entered
query, and have values 62833, 1, and 13 milliseconds, respectively.

– The buffer pool hit ratio appears to be 100 percent.

We can derive the following information from these metrics: The average
elapsed time for the user query is (80.444751 / 1) = 130.732961 seconds,
while that of the remote SQL fragments are fractions of seconds.

This performance problem therefore needs to be investigated at the federated
server only, as described in 4.2.4, “Federated server related” on page 152.

� Federated server related.

As discussed in 4.2.4, “Federated server related” on page 152, poor
performance at the federated server may be caused by a number of factors
such as statistics, index information, pushdown, joins, and parallelism.

Each of these factors need to be evaluated in turn to determine the root cause
of the performance problem.

– A review of the number of rows estimated by the DB2 optimizer in
Example 4-50 on page 278 as being returned from each of the remote
data sources to the federated server, and the actual number of rows
returned (Rows read field) from each of the remote data sources in
Example 4-49 on page 274 show discrepancies that merit investigation.
Since this process has already been discussed in 4.4.2, “Missing or
incorrect statistics/index information” on page 170, we will not repeat it in
this scenario.

Note: To obtain the average elapsed and CPU times, as well as the
number of rows returned, you must divide the values shown by the
Number of executions.

Attention: In our example, it is clear that the predominant portion of the
query time is at the federated server.

 Chapter 4. Performance problem determination scenarios 309

– A review of the remote SQL fragments text and the original statement, as
shown in Example 4-50 on page 278, show that there are predicates that
need to be investigated from a pushdown perspective.

Some of the join predicates need to be executed at the federated server
because they join nicknames across different data sources, but it appears
that some joins between tables at the remote DB2 data source have not
been pushed down. To determine if this was the case, we need to set
DB2_MAXIMAL_PUSHDOWN to ‘Y’ (if it was set to the default of ‘N’), as
shown in Example 4-51, and regenerate db2exfmt output.

Example 4-51 Alter the wrapper option DB2_MAXIMAL_PUSHDOWN to ‘Y’

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64P
 Local database alias = FEDSERV

alter wrapper DRDA options (set DB2_MAXIMAL_PUSHDOWN ‘Y')
DB20000I The SQL command completed successfully.

– db2exfmt output corresponding to DB2_MAXIMAL_PUSHDOWN = ‘Y’ is
shown in Example 4-52.

Example 4-52 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘Y’

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-06-16.16.43.437095
EXPLAIN_REQUESTER: DB2I64

Note: The server option may be also be set temporarily using the SET
SERVER OPTION.

310 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Database Context:

Parallelism: None
CPU Speed: 5.392596e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 100000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE,
 S_COMMENT
FROM db2.PART, db2.SUPPLIER, db2.PARTSUPP, ora.NATION, ora.REGION
WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15 AND
 P_TYPE LIKE '%BRASS' AND S_NATIONKEY = N_NATIONKEY AND R_NAME =
 'EUROPE' AND PS_SUPPLYCOST =
 (SELECT MIN(PS_SUPPLYCOST)
 FROM db2.PARTSUPP, db2.SUPPLIER, ora.NATION, ora.REGION
 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND S_NATIONKEY =
 N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY AND R_NAME = 'EUROPE')
ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY
FETCH FIRST 100 ROWS ONLY

Optimized Statement:

SELECT Q10.S_ACCTBAL AS "S_ACCTBAL", Q10.S_NAME AS "S_NAME", Q8.N_NAME AS

 Chapter 4. Performance problem determination scenarios 311

 "N_NAME", Q11.P_PARTKEY AS "P_PARTKEY", Q11.P_MFGR AS "P_MFGR",
 Q10.S_ADDRESS AS "S_ADDRESS", Q10.S_PHONE AS "S_PHONE", Q10.S_COMMENT
 AS "S_COMMENT"
FROM
 (SELECT MIN(Q5.$C0)
 FROM
 (SELECT Q4.PS_SUPPLYCOST
 FROM ORA.REGION AS Q1, ORA.NATION AS Q2, DB2.SUPPLIER AS Q3,
 DB2.PARTSUPP AS Q4
 WHERE (Q1.R_NAME = 'EUROPE ') AND (Q2.N_REGIONKEY = Q1.R_REGIONKEY) AND
 (Q3.S_NATIONKEY = Q2.N_NATIONKEY) AND (Q3.S_SUPPKEY =
 Q4.PS_SUPPKEY) AND (Q11.P_PARTKEY = Q4.PS_PARTKEY)) AS Q5) AS
 Q6, ORA.REGION AS Q7, ORA.NATION AS Q8, DB2.PARTSUPP AS Q9,
 DB2.SUPPLIER AS Q10, DB2.PART AS Q11
WHERE (Q9.PS_SUPPLYCOST = Q6.$C0) AND (Q7.R_NAME = 'EUROPE ') AND
 (Q10.S_NATIONKEY = Q8.N_NATIONKEY) AND (Q11.P_TYPE LIKE '%BRASS') AND
 (Q11.P_SIZE = 15) AND (Q10.S_SUPPKEY = Q9.PS_SUPPKEY) AND
 (Q11.P_PARTKEY = Q9.PS_PARTKEY)
ORDER BY Q10.S_ACCTBAL DESC, Q8.N_NAME, Q10.S_NAME, Q11.P_PARTKEY

Access Plan:

Total Cost: 713016
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 0.41902
 NLJOIN
 (2)
 713016
 31800.2
 /----+---\
 0.41902 1
 TBSCAN SHIP
 (3) (31)
 713016 0.0047045
 31800.2 0
 | |
 0.41902 5
 SORT NICKNM: ORA
 (4) REGION
 713016
 31800.2
 |

312 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 0.41902
 NLJOIN
 (5)
 713016
 31800.2
 /-------------+------------\
 0.41902 1
 NLJOIN SHIP
 (6) (29)
 713016 0.00680492
 31800.2 0
 /------------+------------\ |
 36042.4 1.16257e-05 25
 SHIP FILTER NICKNM: ORA
 (7) (13) NATION
 708746 275.131
 31789.2 11
 +-----------------+-----------------+ |
 100000 2e+06 8e+06 1
 NICKNM: DB2 NICKNM: DB2 NICKNM: DB2 GRPBY
 SUPPLIER PART PARTSUPP (14)
 275.13
 11
 |
 0.8
 MSJOIN
 (15)
 275.13
 11
 /--------+--------\
 4 0.2
 TBSCAN FILTER
 (16) (22)
 275.103 0.0247592
 11 0
 | |
 4 5
 SORT TBSCAN
 (17) (23)
 275.1 0.0247592
 11 0
 | |
 4 5
 SHIP SORT
 (18) (24)
 275.097 0.021261
 11 0
 /------+-----\ |
 100000 8e+06 5

 Chapter 4. Performance problem determination scenarios 313

 NICKNM: DB2 NICKNM: DB2 SHIP
 SUPPLIER PARTSUPP (25)
 0.0180496
 0
 /------+-----\
 5
25
 NICKNM: ORA NICKNM:
ORA
 REGION
NATION

1) RETURN: (Return Result)
Cumulative Total Cost: 713016
Cumulative CPU Cost: 8.00039e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712741
Cumulative Re-CPU Cost: 8.00034e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 713016
Estimated Bufferpool Buffers: 1
Remote communication cost:26483.8

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

27) From Operator #2

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)
+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

314 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

2) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 713016
Cumulative CPU Cost: 8.00039e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712741
Cumulative Re-CPU Cost: 8.00034e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 713016
Estimated Bufferpool Buffers: 1
Remote communication cost:26483.8

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Input Streams:

24) From Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

26) From Operator #31

Estimated number of rows: 1
Number of columns: 0
Subquery predicate ID: Not Applicable

Output Streams:

27) To Operator #1

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

 Chapter 4. Performance problem determination scenarios 315

Column Names:

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)
+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 713016
Cumulative CPU Cost: 8.00038e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712741
Cumulative Re-CPU Cost: 8.00033e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 713016
Estimated Bufferpool Buffers: 0
Remote communication cost:26477.6

Arguments:

JN INPUT: (Join input leg)

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

23) From Operator #4

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

Output Streams:

24) To Operator #2

316 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

4) SORT : (Sort)
Cumulative Total Cost: 713016
Cumulative CPU Cost: 8.00038e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712741
Cumulative Re-CPU Cost: 8.00033e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 713016
Estimated Bufferpool Buffers: 31791.2
Remote communication cost:26477.6

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

1
ROWWIDTH: (Estimated width of rows)

204
SORTKEY : (Sort Key column)

1: Q10.S_ACCTBAL(D)
SORTKEY : (Sort Key column)

2: Q8.N_NAME(A)
SORTKEY : (Sort Key column)

3: Q10.S_NAME(A)
SORTKEY : (Sort Key column)

4: Q11.P_PARTKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

22) From Operator #5

Estimated number of rows: 0.41902
Number of columns: 11

 Chapter 4. Performance problem determination scenarios 317

Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

Output Streams:

23) To Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

5) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 713016
Cumulative CPU Cost: 8.00038e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712741
Cumulative Re-CPU Cost: 8.00033e+09
Cumulative Re-I/O Cost: 31789.2
Cumulative First Row Cost: 713016
Estimated Bufferpool Buffers: 31791.2
Remote communication cost:26477.6

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

4) Predicate used in Join

Relational Operator: Equal (=)

318 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q10.S_NATIONKEY = Q8.N_NATIONKEY)

Input Streams:

19) From Operator #6

Estimated number of rows: 0.41902
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q10.S_COMMENT
+Q10.S_PHONE+Q10.S_ADDRESS+Q10.S_NAME
+Q10.S_ACCTBAL+Q10.S_NATIONKEY+Q11.P_MFGR
+Q11.P_PARTKEY

21) From Operator #29

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

Output Streams:

22) To Operator #4

Estimated number of rows: 0.41902
Number of columns: 11
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

 Chapter 4. Performance problem determination scenarios 319

6) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 713016
Cumulative CPU Cost: 8.00036e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712741
Cumulative Re-CPU Cost: 8.00032e+09
Cumulative Re-I/O Cost: 31789.2
Cumulative First Row Cost: 713016
Estimated Bufferpool Buffers: 31790.2
Remote communication cost:26471.4

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE
JN INPUT: (Join input leg)

OUTER

Predicates:

2) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

Input Streams:

4) From Operator #7

Estimated number of rows: 36042.4
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

320 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

18) From Operator #13

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

Output Streams:

19) To Operator #5

Estimated number of rows: 0.41902
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q10.S_COMMENT
+Q10.S_PHONE+Q10.S_ADDRESS+Q10.S_NAME
+Q10.S_ACCTBAL+Q10.S_NATIONKEY+Q11.P_MFGR
+Q11.P_PARTKEY

7) SHIP : (Ship)
Cumulative Total Cost: 708746
Cumulative CPU Cost: 5.90826e+08
Cumulative I/O Cost: 31789.2
Cumulative Re-Total Cost: 708746
Cumulative Re-CPU Cost: 5.90826e+08
Cumulative Re-I/O Cost: 31789.2
Cumulative First Row Cost: 708746
Estimated Bufferpool Buffers: 31790.2
Remote communication cost:26449.2

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."P_PARTKEY", A0."P_MFGR", A2."S_NATIONKEY", A2."S_ACCTBAL",
A2."S_NAME", A2."S_ADDRESS", A2."S_PHONE", A2."S_COMMENT", A1."PS_SUPPLYCOST"

 Chapter 4. Performance problem determination scenarios 321

FROM "TPCD"."PART" A0, "TPCD"."PARTSUPP" A1, "TPCD"."SUPPLIER" A2 WHERE
(A0."P_SIZE" = 15) AND (A0."P_TYPE" LIKE '%BRASS') AND (A0."P_PARTKEY" =
A1."PS_PARTKEY") AND (A2."S_SUPPKEY" = A1."PS_SUPPKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object DB2.PART

Estimated number of rows: 2e+06
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q11.RID+Q11.P_MFGR+Q11.P_TYPE+Q11.P_SIZE
+Q11.P_PARTKEY

2) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q9.RID+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q9.PS_PARTKEY

3) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.RID+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q10.S_SUPPKEY

Output Streams:

4) To Operator #6

322 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 36042.4
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

13) FILTER: (Filter)
Cumulative Total Cost: 275.131
Cumulative CPU Cost: 242977
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.131
Cumulative Re-CPU Cost: 242977
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.131
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

2) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

Input Streams:

17) From Operator #14

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

 Chapter 4. Performance problem determination scenarios 323

+Q6.$C0

Output Streams:

18) To Operator #6

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

14) GRPBY : (Group By)
Cumulative Total Cost: 275.13
Cumulative CPU Cost: 241642
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.13
Cumulative Re-CPU Cost: 241642
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.13
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

FALSE
GROUPBYN: (Number of Group By columns)

0
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

16) From Operator #15

Estimated number of rows: 0.8
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

324 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Output Streams:

17) To Operator #13

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

15) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 275.13
Cumulative CPU Cost: 241192
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.13
Cumulative Re-CPU Cost: 241192
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.13
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

EARLYOUT: (Early Out flag)

NONE
INNERCOL: (Inner Order Columns)

1: Q2.N_NATIONKEY(A)
OUTERCOL: (Outer Order columns)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

11) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

 Chapter 4. Performance problem determination scenarios 325

Input Streams:

9) From Operator #16

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

15) From Operator #22

Estimated number of rows: 0.2
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

16) To Operator #14

Estimated number of rows: 0.8
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

16) TBSCAN: (Table Scan)
Cumulative Total Cost: 275.103
Cumulative CPU Cost: 191030
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0566
Cumulative Re-CPU Cost: 104891
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 275.101
Estimated Bufferpool Buffers: 0
Remote communication cost:10.8594

Arguments:

326 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

JN INPUT: (Join input leg)
OUTER

MAXPAGES: (Maximum pages for prefetch)
ALL

PREFETCH: (Type of Prefetch)
NONE

SCANDIR : (Scan Direction)
FORWARD

Input Streams:

8) From Operator #17

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

Output Streams:

9) To Operator #15

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

17) SORT : (Sort)
Cumulative Total Cost: 275.1
Cumulative CPU Cost: 185333
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0535
Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 275.1
Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

Arguments:

DUPLWARN: (Duplicates Warning flag)

 Chapter 4. Performance problem determination scenarios 327

FALSE
NUMROWS : (Estimated number of rows)

4
ROWWIDTH: (Estimated width of rows)

16
SORTKEY : (Sort Key column)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

7) From Operator #18

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

Output Streams:

8) To Operator #16

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

18) SHIP : (Ship)
Cumulative Total Cost: 275.097
Cumulative CPU Cost: 180037
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0535
Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 125.05
Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

328 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."PS_SUPPLYCOST", A1."S_NATIONKEY" FROM "TPCD"."PARTSUPP"
A0, "TPCD"."SUPPLIER" A1 WHERE (:H0 = A0."PS_PARTKEY") AND (A1."S_SUPPKEY" =
A0."PS_SUPPKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

5) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q4.RID+Q4.PS_SUPPLYCOST+Q4.PS_SUPPKEY
+Q4.PS_PARTKEY

6) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q3.RID+Q3.S_NATIONKEY+Q3.S_SUPPKEY

Output Streams:

7) To Operator #17

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

 Chapter 4. Performance problem determination scenarios 329

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

22) FILTER: (Filter)
Cumulative Total Cost: 0.0247592
Cumulative CPU Cost: 45913.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.0103888
Cumulative Re-CPU Cost: 19265
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.022036
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

11) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

Input Streams:

14) From Operator #23

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

15) To Operator #15

Estimated number of rows: 0.2

330 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

23) TBSCAN: (Table Scan)
Cumulative Total Cost: 0.0247592
Cumulative CPU Cost: 45913.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.0103888
Cumulative Re-CPU Cost: 19265
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.022036
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

13) From Operator #24

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

14) To Operator #22

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

 Chapter 4. Performance problem determination scenarios 331

Column Names:

+Q2.N_NATIONKEY(A)

24) SORT : (Sort)
Cumulative Total Cost: 0.021261
Cumulative CPU Cost: 39426.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00689066
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.021261
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

5
ROWWIDTH: (Estimated width of rows)

12
SORTKEY : (Sort Key column)

1: Q2.N_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

12) From Operator #25

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY

Output Streams:

13) To Operator #23

Estimated number of rows: 5

332 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

25) SHIP : (Ship)
Cumulative Total Cost: 0.0180496
Cumulative CPU Cost: 33471
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00689066
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0103301
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A1."N_NATIONKEY" FROM "IITEST"."REGION" A0, "IITEST"."NATION"
A1 WHERE (A0."R_NAME" = 'EUROPE ') AND (A1."N_REGIONKEY" =
A0."R_REGIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

10) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.R_NAME+Q1.R_REGIONKEY

11) From Object ORA.NATION

Estimated number of rows: 25

 Chapter 4. Performance problem determination scenarios 333

Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.N_REGIONKEY+Q2.N_NATIONKEY

Output Streams:

12) To Operator #24

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY

29) SHIP : (Ship)
Cumulative Total Cost: 0.00680492
Cumulative CPU Cost: 12619
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00448071
Cumulative Re-CPU Cost: 8309
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0055959
Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT A0."N_NAME" FROM "IITEST"."NATION" A0 WHERE (:H0 =
A0."N_NATIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

334 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

20) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q8.RID+Q8.N_NAME+Q8.N_NATIONKEY

Output Streams:

21) To Operator #5

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

31) SHIP : (Ship)
Cumulative Total Cost: 0.0047045
Cumulative CPU Cost: 8724
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00240995
Cumulative Re-CPU Cost: 4469
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00352514
Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT '1' FROM "IITEST"."REGION" A0 WHERE (A0."R_NAME" = 'EUROPE
')

SRCSEVER: (Source (ship from) server)
ORASERV

 Chapter 4. Performance problem determination scenarios 335

STREAM : (Remote stream)
FALSE

Input Streams:

25) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.RID+Q7.R_NAME

Output Streams:

26) To Operator #2

Estimated number of rows: 1
Number of columns: 0
Subquery predicate ID: Not Applicable

Objects Used in Access Plan:

Schema: DB2I64
Name: ORDERSMQT
Type: Materialized View (reference only)

Schema: DB2
Name: PART
Type: Nickname

Time of creation: 2004-06-17-10.42.49.959240
Last statistics update:
Number of columns: 9
Number of rows: 2000000
Width of rows: 70
Number of buffer pool pages: 76238
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

336 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Schema: DB2
Name: PARTSUPP
Type: Nickname

Time of creation: 2004-06-17-10.42.55.831083
Last statistics update:
Number of columns: 5
Number of rows: 8000000
Width of rows: 28
Number of buffer pool pages: 319290
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: DB2
Name: SUPPLIER
Type: Nickname

Time of creation: 2004-06-17-10.42.53.722466
Last statistics update:
Number of columns: 7
Number of rows: 100000
Width of rows: 157
Number of buffer pool pages: 4093
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: NATION
Type: Nickname

Time of creation: 2004-06-16-23.22.43.109494
Last statistics update:
Number of columns: 4
Number of rows: 25
Width of rows: 62
Number of buffer pool pages: 15
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32

 Chapter 4. Performance problem determination scenarios 337

Container extent page count: 32

Schema: ORA
Name: REGION
Type: Nickname

Time of creation: 2004-06-16-23.22.43.342734
Last statistics update:
Number of columns: 3
Number of rows: 5
Width of rows: 56
Number of buffer pool pages: 15
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

The access plans generated in Example 4-50 on page 278
(DB2_MAXIMAL_PUSHDOWN = ‘N’) and Example 4-52 on page 310
(DB2_MAXIMAL_PUSHDOWN = ‘Y’) are different in that the 3-way join of
PART, PARTSUPP, and SUPPLIER has now been pushed down to DB2 (see
SHIP operator 7), thereby eliminating a need for a nested loop join. However,
the estimated total cost with DB2_MAXIMAL_PUSHDOWN = ‘Y’ is now
713016 timerons, which is higher than the 696955 timerons with
DB2_MAXIMAL_PUSHDOWN = ‘N’.

Root cause of the problem
It appears that the problem query has some pushdownable predicates that were
executed at the federated server, since the optimizer estimated it to be the
lowest cost access plan for the query. This is because of the default setting of the
DB2_MAXIMAL_PUSHDOWN server option.

Apply best practices
We recommend that you consider the problem query with
DB2_MAXIMAL_PUSHDOWN set to ‘Y’ using the SET SERVER OPTION to
isolate the impact of this option only to the specific problem query.

Attention: In this scenario, the fact that the DB2 optimizer chose not to push
down certain predicates is not indicative of a problem, and therefore root
cause is a misnomer. However, given the lack of any other indications, this
lack of pushdown of predicates merits investigation as a possible cause of the
performance problem.

338 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Since tuning tends to be a trial-and-error iterative process, it is more than likely
that some of the options suggested could lead to other performance problems
that would need to be investigated and resolved.

4.4.7 Default DB2_FENCED wrapper option with DPF
The DB2_FENCED wrapper option is new in DB2 II V8.2 and allows the DBA to
decide whether the wrapper should operate in trusted or fenced mode. When the
DB2_FENCED parameter is set to ‘Y’ and DB2 II is installed in a DPF
environment, the federated server is able to generate access plans that
parallelize the processing of nickname data, and thereby improve query
performance. With the default setting of DB2_FENCED = ‘N’, there is no
inter-partition parallelism for nickname data. For more details on the performance
considerations of the DB2_FENCED wrapper option, refer to “Choice of DPF” on
page 62.

In this scenario, we diagnose how the default setting of the DB2_FENCED
wrapper option may inhibit a federated query accessing both local and nickname
data in a DPF environment from delivering superior performance.

Triggering event
Users complained about poor response times with a specific query. The users
claimed that they had never really experienced good performance from this
query.

Hypotheses and validations
As before, since these were user complaints about the performance of a specific
query, as per Figure 4-3 on page 122, we decided to enter the DB2 hypotheses
hierarchy described in Figure 4-1 on page 117 and Example 4.2 on page 119, at
a lower level, bypassing network- and system-related problems, and focused
directly on federated application/query performance, as follows.

Hypothesis 1: Federated application/query performance
Before one can investigate the cause of a query’s performance problem, one
needs to identify the query in question. After identifying the query in question,
one can begin diagnosing whether the performance problem is at the federated
server, the remote data source, or equally divided between the two, as discussed
in Example 4.2 on page 119.

Attention: In the final analysis, what really matters is not what the DB2
optimizer estimates to be the optimal access path based on timerons, but the
actual run times experienced by the user.

 Chapter 4. Performance problem determination scenarios 339

� Identify the application and query.

In this case the user specifically identified the query in question as being the
one shown in Example 4-53. It lists all orders by customer. The orders table is
a local DB2 table, while the customer table is a nickname referencing a
remote Oracle table.

Example 4-53 Problem query

select *
from tpcd.orders o, ora.customer c
where o.o_custkey = c.c_custkey
and c_mktsegment = 'AUTOMOBILE'
and c_nationkey > 20;

� Determine if the problem is at the Federated server or the data source.

Once the problem query has been identified, we need to determine if the
query’s performance problem is at the federated server, the remote data
source, or distributed between both.

This information can be determined from a dynamic SQL snapshot, as
discussed in 4.2.3, “Federated server or remote data source” on page 136.
Example 4-54 is a dynamic SQL snapshot, and includes the problem query
(highlighted) in the Statement text field.

Example 4-54 Dynamic SQL snapshot

get snapshot for dynamic sql on fedserv

 Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/part/db2i64p/NODE0000/SQL00001/

 Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 816
 Best preparation time (ms) = 816
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 483185
 Internal rows updated = 0
 Rows written = 483185
 Statement sorts = 0
 Statement sort overflows = 0
 Total sort time = 0
 Buffer pool data logical reads = 4

340 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Buffer pool data physical reads = 1
 Buffer pool temporary data logical reads = 49862
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 6
 Buffer pool index physical reads = 3
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 130.732961
 Total user cpu time (sec.ms) = 45.140000
 Total system cpu time (sec.ms) = 1.230000
 Statement text = select * from tpcd.orders o, ora.customer
c where o.o_custkey = c.c_custkey and c_mktsegment = 'AUTOMOBILE' and
c_nationkey > 20

Number of executions = 1
 Number of compilations = 1
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 48238
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 6.373050
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = SELECT A0."C_CUSTKEY", A0."C_NATIONKEY",
A0."C_NAME", A0."C_ADDRESS", A0."C_PHONE", A0."C_ACCTBAL", A0."C_COMMENT" FROM
"IITEST"."CUSTOMER" A0 WHERE (A0."C_MKTSEGMENT" = 'AUTOMOBILE') AND (20 <
A0."C_NATIONKEY")

As discussed in 4.2.3, “Federated server or remote data source” on page 136,
since there is no direct mechanism to link the remote SQL fragments in the
dynamic cache with their corresponding user SQL statement, we generated
db2exfmt output for the user query, as shown in Example 4-55, to obtain this
link.

Example 4-55 db2exfmt output of problem query

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002

 Chapter 4. Performance problem determination scenarios 341

Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-06-11.43.00.095214
EXPLAIN_REQUESTER: DB2I64P

Database Context:

Parallelism: Inter-Partition Parallelism
CPU Speed: 5.313873e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select *
from tpcd.orders o, ora.customer c
where o.o_custkey = c.c_custkey and c_mktsegment = 'AUTOMOBILE' and

342 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 c_nationkey > 20

Optimized Statement:

SELECT Q3.$C7 AS "O_ORDERKEY", Q3.$C8 AS "O_CUSTKEY", Q3.$C6 AS
 "O_ORDERSTATUS", Q3.$C5 AS "O_TOTALPRICE", Q3.$C4 AS "O_ORDERDATE",
 Q3.$C3 AS "O_ORDERPRIORITY", Q3.$C2 AS "O_CLERK", Q3.$C1 AS
 "O_SHIPPRIORITY", Q3.$C0 AS "O_COMMENT", Q1.C_CUSTKEY AS "C_CUSTKEY",
 Q1.C_NAME AS "C_NAME", Q1.C_ADDRESS AS "C_ADDRESS", Q1.C_NATIONKEY AS
 "C_NATIONKEY", Q1.C_PHONE AS "C_PHONE", Q1.C_ACCTBAL AS "C_ACCTBAL",
 'AUTOMOBILE' AS "C_MKTSEGMENT", Q1.C_COMMENT AS "C_COMMENT"
FROM ORA.CUSTOMER AS Q1,
 (SELECT Q2.O_COMMENT, Q2.O_SHIPPRIORITY, Q2.O_CLERK, Q2.O_ORDERPRIORITY,
 Q2.O_ORDERDATE, Q2.O_TOTALPRICE, Q2.O_ORDERSTATUS, Q2.O_ORDERKEY,
 Q2.O_CUSTKEY
 FROM TPCD.ORDERS AS Q2) AS Q3
WHERE (20 < Q1.C_NATIONKEY) AND (Q1.C_MKTSEGMENT = 'AUTOMOBILE') AND (Q3.$C8
 = Q1.C_CUSTKEY)

Access Plan:

Total Cost: 2.29808e+06
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 2.18739e+06
 HSJOIN
 (2)
 2.29808e+06
 572713
 /-----+----\
 3.00114e+07 144000
 DTQ SHIP
 (3) (5)
 638128 128168
 296184 32173
 | |
 1.00038e+07 1.5e+06
 TBSCAN NICKNM: ORA
 (4) CUSTOMER
 628410
 296184
 |

 Chapter 4. Performance problem determination scenarios 343

 1.00038e+07
 TABLE: TPCD
 ORDERS

1) RETURN: (Return Result)
Cumulative Total Cost: 2.29808e+06
Cumulative CPU Cost: 5.3062e+10
Cumulative I/O Cost: 572713
Cumulative Re-Total Cost: 2.29808e+06
Cumulative Re-CPU Cost: 5.3062e+10
Cumulative Re-I/O Cost: 572713
Cumulative First Row Cost: 2.29808e+06
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 474290
Remote communication cost:113565

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
STMTHEAP: (Statement heap size)

4096

Input Streams:

6) From Operator #2

Estimated number of rows: 2.18739e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q4.C_COMMENT+Q4.C_MKTSEGMENT+Q4.C_ACCTBAL
+Q4.C_PHONE+Q4.C_NATIONKEY+Q4.C_ADDRESS
+Q4.C_NAME+Q4.C_CUSTKEY+Q4.O_COMMENT
+Q4.O_SHIPPRIORITY+Q4.O_CLERK
+Q4.O_ORDERPRIORITY+Q4.O_ORDERDATE
+Q4.O_TOTALPRICE+Q4.O_ORDERSTATUS+Q4.O_CUSTKEY
+Q4.O_ORDERKEY

Partition Column Names:

344 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+NONE

2) HSJOIN: (Hash Join)
Cumulative Total Cost: 2.29808e+06
Cumulative CPU Cost: 5.3062e+10
Cumulative I/O Cost: 572713
Cumulative Re-Total Cost: 2.29808e+06
Cumulative Re-CPU Cost: 5.3062e+10
Cumulative Re-I/O Cost: 572713
Cumulative First Row Cost: 2.29808e+06
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 474290
Remote communication cost:113565

Arguments:

BITFLTR : (Hash Join Bit Filter used)

142240
EARLYOUT: (Early Out flag)

LEFT
HASHCODE: (Hash Code Size)

24 BIT
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

4) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q3.$C8 = Q1.C_CUSTKEY)

Input Streams:

3) From Operator #3

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9

 Chapter 4. Performance problem determination scenarios 345

Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+NONE

5) From Operator #5

Estimated number of rows: 144000
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY
+Q1.C_CUSTKEY

Partition Column Names:

+NONE

Output Streams:

6) To Operator #1

Estimated number of rows: 2.18739e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q4.C_COMMENT+Q4.C_MKTSEGMENT+Q4.C_ACCTBAL
+Q4.C_PHONE+Q4.C_NATIONKEY+Q4.C_ADDRESS
+Q4.C_NAME+Q4.C_CUSTKEY+Q4.O_COMMENT

346 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q4.O_SHIPPRIORITY+Q4.O_CLERK
+Q4.O_ORDERPRIORITY+Q4.O_ORDERDATE
+Q4.O_TOTALPRICE+Q4.O_ORDERSTATUS+Q4.O_CUSTKEY
+Q4.O_ORDERKEY

Partition Column Names:

+NONE

3) TQ : (Table Queue)
Cumulative Total Cost: 638128
Cumulative CPU Cost: 3.73425e+10
Cumulative I/O Cost: 296184
Cumulative Re-Total Cost: 628410
Cumulative Re-CPU Cost: 1.90555e+10
Cumulative Re-I/O Cost: 296184
Cumulative First Row Cost: 10.4828
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 296184

Arguments:

JN INPUT: (Join input leg)

OUTER
LISTENER: (Listener Table Queue type)

FALSE
TQMERGE : (Merging Table Queue flag)

FALSE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

DIRECTED
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

2) From Operator #4

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

 Chapter 4. Performance problem determination scenarios 347

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+1: Q3.O_ORDERKEY

Output Streams:

3) To Operator #2

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+NONE

4) TBSCAN: (Table Scan)
Cumulative Total Cost: 628410
Cumulative CPU Cost: 1.90555e+10
Cumulative I/O Cost: 296184
Cumulative Re-Total Cost: 628410
Cumulative Re-CPU Cost: 1.90555e+10
Cumulative Re-I/O Cost: 296184
Cumulative First Row Cost: 10.4278
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 296184

Arguments:

MAXPAGES: (Maximum pages for prefetch)

348 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY

Input Streams:

1) From Object TPCD.ORDERS

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_CUSTKEY+Q2.O_ORDERKEY
+Q2.O_ORDERSTATUS+Q2.O_TOTALPRICE
+Q2.O_ORDERDATE+Q2.O_ORDERPRIORITY+Q2.O_CLERK
+Q2.O_SHIPPRIORITY+Q2.O_COMMENT

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

2) To Operator #3

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK

 Chapter 4. Performance problem determination scenarios 349

+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+1: Q3.O_ORDERKEY

5) SHIP : (Ship)
Cumulative Total Cost: 128168
Cumulative CPU Cost: 4.29461e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 2176.51
Cumulative Re-CPU Cost: 4.0959e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.8328
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32173
Remote communication cost:113565

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT A0."C_CUSTKEY", A0."C_NATIONKEY", A0."C_NAME", A0."C_ADDRESS",
A0."C_PHONE", A0."C_ACCTBAL", A0."C_COMMENT" FROM "IITEST"."CUSTOMER" A0 WHERE
(A0."C_MKTSEGMENT" = 'AUTOMOBILE') AND (20 < A0."C_NATIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

4) From Object ORA.CUSTOMER

Estimated number of rows: 1.5e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

350 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q1.RID+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY
+Q1.C_MKTSEGMENT+Q1.C_CUSTKEY

Partition Column Names:

+NONE

Output Streams:

5) To Operator #2

Estimated number of rows: 144000
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY
+Q1.C_CUSTKEY

Partition Column Names:

+NONE

Objects Used in Access Plan:

Schema: ORA
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-06-10-08.32.16.950465
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 236
Number of buffer pool pages: 32173
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000

 Chapter 4. Performance problem determination scenarios 351

Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: TPCD
Name: ORDERS
Type: Table

Time of creation: 2004-06-04-07.02.15.736633
Last statistics update: 2004-06-09-23.20.10.138687
Number of columns: 9
Number of rows: 10003789
Width of rows: 115
Number of buffer pool pages: 296184
Distinct row values: No
Tablespace name: DATA_TS
Tablespace overhead: 9.500000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 48
Container extent page count: 16
Table overflow record count: 0
Table Active Blocks: -1

The RMTQTXT fields of SHIP operator 5 in Example 4-55 on page 341
contain the following remote SQL fragment text:

SELECT A0."C_CUSTKEY", A0."C_NATIONKEY", A0."C_NAME", A0."C_ADDRESS",
A0."C_PHONE", A0."C_ACCTBAL", A0."C_COMMENT" FROM "IITEST"."CUSTOMER" A0
WHERE (A0."C_MKTSEGMENT" = 'AUTOMOBILE') AND (20 < A0."C_NATIONKEY")

This remote SQL fragment is located in the dynamic cache output shown in
Example 4-54 on page 340, and the following information can be gathered:

– Number of executions is 1 for the user-entered query as well as the
single remote SQL fragment.

– Total execution time (sec.ms), which is 130.732961 seconds for the
user-entered query, and 6.373050 seconds for the remote fragment.

– Total user cpu time (sec.ms) and Total system cpu time (sec.ms),
which are 45.140000 and 1.230000 for the user-entered query, and zero
for the remote SQL fragment.

Note: The DB2 instance used is DB2I64P and the Parallelism field in the
Database Context section indicates that inter-partition parallelism is
enabled, indicating a DPF environment.

352 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

– Rows read is 483185 for the user-entered query, which is the number of
rows returned to the user; and 48238 rows for the remote SQL fragment,
which indicates the number of rows returned to the federated server from
the remote data source.

– Other fields of interest include Statement sorts, Statement sort
overflows, and Total sort time, which only apply to the user-entered
query, and all have zero values.

– The buffer pool hit ratio appears to be 100 percent.

We can derive the following information from these metrics:

– The average number of rows returned from the remote data source to the
federated server is (48238 / 1) = 48238.

– The average elapsed time for the user query is (130.732961 / 1) =
130.732961 seconds, while that of the remote SQL fragment is (6.373050
/ 1) = 6.373050 seconds.

This performance problem, therefore, needs to be investigated at the
federated server only, as described in 4.2.4, “Federated server related” on
page 152.

� Federated server related.

As discussed in 4.2.4, “Federated server related” on page 152, poor
performance at the federated server may be caused by a number of factors
such as statistics, index information, pushdown, joins, and parallelism.

Each of these factors needs to be evaluated in turn to determine the root
cause of the performance problem.

– A review of the number of rows (144000) estimated by the DB2 optimizer
in Example 4-55 on page 341 as being returned from the remote data
source to the federated server, and the actual number of rows returned
(Rows read field 48238) from the remote data source in Example 4-54 on
page 340 shows a discrepancy that merits investigation. Since this

Note: To obtain the average elapsed and CPU times, as well as the
number of rows returned, you must divide the values shown by the
Number of executions.

Attention: In our example, given that the total query elapsed time is
130.732961 seconds and the time spent at the remote data source is only
6.373050 seconds, it is clear that the predominant portion of the query time
is at the federated server. The time spent at the federated server is
(130.732961 - (6.373050) = 124.359911 seconds.

 Chapter 4. Performance problem determination scenarios 353

process has already been discussed in 4.4.2, “Missing or incorrect
statistics/index information” on page 170, we will not be repeating it in this
scenario.

– A review of the remote SQL fragment text and the original statement
(which is a join of a nickname and local DPF data, as shown in
Example 4-55 on page 341) shows that there are no predicates that need
to be investigated from a pushdown perspective.

The join predicate has to be executed at the federated server because the
join is of a local table and a nickname referencing a remote data source.

– db2exfmt output in Example 4-55 on page 341 shows the hash join
(HSJOIN operator 2) being performed with an estimated 3.00114e+07
rows from the TPCD.ORDERS outer table with an estimated 144000 rows
from the inner table ORA.CUSTOMER. The local TPCD.ORDERS table is
scanned (TBSCAN operator 4) in parallel (DTQ operator 3) and data is
sent to the coordinator partition where the hash join is performed.

– As mentioned earlier, db2exfmt output in Example 4-55 on page 341
shows that inter-partition parallelism is enabled, but that nickname data
ORA.CUSTOMER is serially joined with local TPCD.ORDERS data at the
coordinator partition.

If the hash join (HSJOIN operator 2) operation were to be done in the
partitions where the TPCD.ORDERS data is located rather than at the
coordinator node, a TQ operator would appear above the HSJOIN
operator in the access plan graph. If the parallel plan that would do the join
in the partitions is allowed, it is still the optimizer's choice based on cost to
decide on whether to use that plan or a non-parallel plan such as the one
in the example. We therefore need to determine whether inter-partition
parallelism has been inhibited by the DB2_FENCED wrapper option or the
decision not to perform joins in parallel was a cost optimization decision by
the DB2 optimizer. Example 4-56 shows the query for determining the
NET8 wrapper’s DB2_FENCED option setting. The result shows a default
setting of ‘N’ (trusted), which inhibits inter-partition parallelism with
nickname data.

Note: Table TPCD.ORDERS is a local table with an estimated
1.00038e+07 rows, and the dynamic SQL snapshot does not provide
information about the actual number of rows returned.

Note: db2exfmt output in Example 4-55 on page 341 shows Query
Degree:1 indicating that intra-partition parallelism is disabled.

354 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

The Computation Partition Group (CPG) capability does not apply in this
case because the problem query joins nickname and local DPF data, and
CPG applies only when both joined tables are nicknames.

Example 4-56 Show wrapper option

select substr(wrapname,1,8) as wrapname,
substr(option, 1,12) as option,
substr(setting, 1,8) as setting
from syscat.wrapoptions
where wrapname = 'NET8'

WRAPNAME OPTION SETTING
-------- ------------ --------
NET8 DB2_FENCED N

 1 record(s) selected.

Root cause of the problem
It appears that the problem query cannot exploit inter-partition parallel
processing with nickname data because the Oracle wrapper (NET8) has its
wrapper option DB2_FENCED default to ‘N’ (trusted) instead of fenced
(DB2_FENCED = ‘Y’).

Apply best practices
We recommend the following steps to address the performance impact of the
default DB2_FENCED wrapper option on the problem query.

1. Change the Oracle wrapper (NET8) DB2_FENCED option from its default
value of ‘N’ (trusted) to ‘Y’ (fenced).

Example 4-57 shows how the DB2_FENCED wrapper option can be altered
to ‘Y’ (fenced).

Example 4-57 Alter the wrapper option DB2_FENCED to ‘Y’

connect to fedserv

 Database Connection Information

 Database server = DB2/AIX64 8.2.0
 SQL authorization ID = DB2I64P
 Local database alias = FEDSERV

alter wrapper net8 options (set DB2_FENCED 'Y')
DB20000I The SQL command completed successfully.

 Chapter 4. Performance problem determination scenarios 355

2. Run db2exfmt on the query.

Example 4-58 on page 356 shows the db2exfmt output after the wrapper
option was changed to fenced from trusted. The Access Plan section shows a
directed table queue operation (DTQ operator 2) above the nested loop join
(NLJOIN operator 3) that indicates that the federated server distributes (as
indicated by the broadcast table queue BTQ operator 4) nickname data from
ORA.CUSTOMER to the other partitions and performs the join with the local
data in parallel. The Total Cost is estimated to be 136545 timerons, which is
considerably less than the access plan estimate of 2.29808e+06 timerons in
Example 4-55 on page 341.

Since tuning tends to be a trial-and-error iterative process, it is more than likely
that some of the options suggested could lead to other performance problems
that would need to be investigated and resolved.

Example 4-58 db2exfmt output of problem query

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002

Note: We chose not to change the database configuration parameter
DFT_DEGREE setting to -1 or ANY, or the database manager
configuration parameter INTRA_PARALLEL to YES to enable
intra-partition parallelism, since the emphasis of this scenario is on the
performance impact of the default DB2_FENCED wrapper option.

Note: The choice of the parallel plan is made by the optimizer based on
cost. We can see the parallel plan that was selected after we set the
wrapper option DB2_FENCED to 'Y’, and the non-parallel plan that was
selected when the DB2_FENCED was set to 'N'. We can also see the
estimated cumulative cost (timerons) of both plans. The cost of the
non-parallel plan is 2.29808e+06 (that is, 2,298,080) timerons, while that of
the parallel plan is 136,545 timerons. In this case the parallel plan is lower
in cost, which is the reason for its selection for this query once we set
DB2_FENCED = 'Y'. If the parallel plan had not been the lower-cost plan,
we would still have seen the non-parallel plan in db2exfmt after setting
DB2_FENCED 'Y'. The parallel plan would still have been evaluated by the
optimizer, but would not have been selected due to its higher-cost
estimate, and would therefore not appear in db2exfmt.

Attention: In the final analysis, what really matters is not what the DB2
optimizer estimates to be the optimal access path based on timerons, but
the actual run times experienced by the user.

356 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-06-11.45.14.176011
EXPLAIN_REQUESTER: DB2I64P

Database Context:

Parallelism: Inter-Partition Parallelism
CPU Speed: 5.313873e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select *
from tpcd.orders o, ora.customer c
where o.o_custkey = c.c_custkey and c_mktsegment = 'AUTOMOBILE' and

 Chapter 4. Performance problem determination scenarios 357

 c_nationkey > 20

Optimized Statement:

SELECT Q2.O_ORDERKEY AS "O_ORDERKEY", Q2.O_CUSTKEY AS "O_CUSTKEY",
 Q2.O_ORDERSTATUS AS "O_ORDERSTATUS", Q2.O_TOTALPRICE AS
 "O_TOTALPRICE", Q2.O_ORDERDATE AS "O_ORDERDATE", Q2.O_ORDERPRIORITY
 AS "O_ORDERPRIORITY", Q2.O_CLERK AS "O_CLERK", Q2.O_SHIPPRIORITY AS
 "O_SHIPPRIORITY", Q2.O_COMMENT AS "O_COMMENT", Q1.C_CUSTKEY AS
 "C_CUSTKEY", Q1.C_NAME AS "C_NAME", Q1.C_ADDRESS AS "C_ADDRESS",
 Q1.C_NATIONKEY AS "C_NATIONKEY", Q1.C_PHONE AS "C_PHONE",
 Q1.C_ACCTBAL AS "C_ACCTBAL", 'AUTOMOBILE' AS "C_MKTSEGMENT",
 Q1.C_COMMENT AS "C_COMMENT"
FROM ORA.CUSTOMER AS Q1, TPCD.ORDERS AS Q2
WHERE (20 < Q1.C_NATIONKEY) AND (Q1.C_MKTSEGMENT = 'AUTOMOBILE') AND
 (Q2.O_CUSTKEY = Q1.C_CUSTKEY)

Access Plan:

Total Cost: 136545
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 2.18739e+06
 DTQ
 (2)
 136545
 32193.1
 |
 729129
 NLJOIN
 (3)
 135482
 32193.1
 /------+------\
 144000 5.0634
 BTQ FETCH
 (4) (7)
 128290 53.8812
 32173 17.5276
 | /---+---\
 144000 5.0634 1.00038e+07
 SHIP RIDSCN TABLE: TPCD

358 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 (5) (8) ORDERS
 128168 20.8488
 32173 2
 | |
 1.5e+06 5.0634
 NICKNM: ORA SORT
 CUSTOMER (9)
 20.8481
 2
 |
 5.0634
 IXSCAN
 (10)
 20.8465
 2
 |
 1.00038e+07
 INDEX: TPCD
 O_CK

1) RETURN: (Return Result)
Cumulative Total Cost: 136545
Cumulative CPU Cost: 1.99431e+10
Cumulative I/O Cost: 32193.1
Cumulative Re-Total Cost: 9306.44
Cumulative Re-CPU Cost: 1.75135e+10
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 57.1984
Cumulative Comm Cost:589375
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32191.1
Remote communication cost:113565

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
STMTHEAP: (Statement heap size)

4096

Input Streams:

11) From Operator #2

Estimated number of rows: 2.18739e+06
Partition Map ID: -100

 Chapter 4. Performance problem determination scenarios 359

Partitioning: (COOR)
Coordinator Partition

Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

+NONE

2) TQ : (Table Queue)
Cumulative Total Cost: 136545
Cumulative CPU Cost: 1.99431e+10
Cumulative I/O Cost: 32193.1
Cumulative Re-Total Cost: 9306.44
Cumulative Re-CPU Cost: 1.75135e+10
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 57.1984
Cumulative Comm Cost:589375
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32191.1
Remote communication cost:113565

Arguments:

LISTENER: (Listener Table Queue type)

FALSE
TQMERGE : (Merging Table Queue flag)

FALSE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

DIRECTED
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

10) From Operator #3

360 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 729129
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

+1: Q3.O_ORDERKEY

Output Streams:

11) To Operator #1

Estimated number of rows: 2.18739e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

+NONE

 Chapter 4. Performance problem determination scenarios 361

3) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 135482
Cumulative CPU Cost: 1.79422e+10
Cumulative I/O Cost: 32193.1
Cumulative Re-Total Cost: 9306.44
Cumulative Re-CPU Cost: 1.75135e+10
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 57.1435
Cumulative Comm Cost:68135.2
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32191.1
Remote communication cost:113565

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

4) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

Input Streams:

3) From Operator #4

Estimated number of rows: 144000
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY

362 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q1.C_CUSTKEY

Partition Column Names:

+NONE

9) From Operator #7

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_COMMENT+Q2.O_SHIPPRIORITY
+Q2.O_CLERK+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS
+Q2.O_ORDERKEY+Q2.O_CUSTKEY

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

10) To Operator #2

Estimated number of rows: 729129
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

 Chapter 4. Performance problem determination scenarios 363

+1: Q3.O_ORDERKEY

4) TQ : (Table Queue)
Cumulative Total Cost: 128290
Cumulative CPU Cost: 4.52455e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 2176.51
Cumulative Re-CPU Cost: 4.0959e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.8878
Cumulative Comm Cost:68135.2
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32173
Remote communication cost:113565

Arguments:

JN INPUT: (Join input leg)

OUTER
LISTENER: (Listener Table Queue type)

FALSE
TQMERGE : (Merging Table Queue flag)

FALSE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

BROADCAST
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

2) From Operator #5

Estimated number of rows: 144000
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY
+Q1.C_CUSTKEY

364 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Partition Column Names:

+NONE

Output Streams:

3) To Operator #3

Estimated number of rows: 144000
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY
+Q1.C_CUSTKEY

Partition Column Names:

+NONE

5) SHIP : (Ship)
Cumulative Total Cost: 128168
Cumulative CPU Cost: 4.29461e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 2176.51
Cumulative Re-CPU Cost: 4.0959e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.8328
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32173
Remote communication cost:113565

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

 Chapter 4. Performance problem determination scenarios 365

SELECT A0."C_CUSTKEY", A0."C_NATIONKEY", A0."C_NAME", A0."C_ADDRESS",
A0."C_PHONE", A0."C_ACCTBAL", A0."C_COMMENT" FROM "IITEST"."CUSTOMER" A0 WHERE
(A0."C_MKTSEGMENT" = 'AUTOMOBILE') AND (20 < A0."C_NATIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object ORA.CUSTOMER

Estimated number of rows: 1.5e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY
+Q1.C_MKTSEGMENT+Q1.C_CUSTKEY

Partition Column Names:

+NONE

Output Streams:

2) To Operator #4

Estimated number of rows: 144000
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_ACCTBAL+Q1.C_PHONE
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_NATIONKEY
+Q1.C_CUSTKEY

Partition Column Names:

366 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+NONE

7) FETCH : (Fetch)
Cumulative Total Cost: 53.8812
Cumulative CPU Cost: 200124
Cumulative I/O Cost: 17.5276
Cumulative Re-Total Cost: 43.4524
Cumulative Re-CPU Cost: 145972
Cumulative Re-I/O Cost: 15.5276
Cumulative First Row Cost: 31.2557
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 18.0566

Arguments:

JN INPUT: (Join input leg)

INNER
MAX RIDS: (Maximum RIDs per list prefetch request)

512
MAXPAGES: (Maximum pages for prefetch)

3
PREFETCH: (Type of Prefetch)

LIST
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
TABLOCK : (Table Lock intent)

INTENT SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY

Predicates:

4) Sargable Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

Input Streams:

7) From Operator #8

Estimated number of rows: 5.0634

 Chapter 4. Performance problem determination scenarios 367

Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

8) From Object TPCD.ORDERS

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_COMMENT+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS
+Q2.O_ORDERKEY+Q2.O_CUSTKEY

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

9) To Operator #3

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_COMMENT+Q2.O_SHIPPRIORITY

368 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q2.O_CLERK+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS
+Q2.O_ORDERKEY+Q2.O_CUSTKEY

Partition Column Names:

+1: Q2.O_ORDERKEY

8) RIDSCN: (Row Identifier Scan)
Cumulative Total Cost: 20.8488
Cumulative CPU Cost: 91759.9
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 10.4222
Cumulative Re-CPU Cost: 41857
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 20.8481
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 3

Arguments:

NUMROWS : (Estimated number of rows)

6

Input Streams:

6) From Operator #9

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

7) To Operator #7

 Chapter 4. Performance problem determination scenarios 369

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

9) SORT : (Sort)
Cumulative Total Cost: 20.8481
Cumulative CPU Cost: 90472.9
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 10.4208
Cumulative Re-CPU Cost: 39054.2
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 20.8481
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 3

Arguments:

DUPLWARN: (Duplicates Warning flag)

TRUE
NUMROWS : (Estimated number of rows)

6
ROWWIDTH: (Estimated width of rows)

12
SORTKEY : (Sort Key column)

1: Q2.RID(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

TRUE

Input Streams:

5) From Operator #10

Estimated number of rows: 5.0634

370 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_CUSTKEY(A)+Q2.RID

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

6) To Operator #8

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

10) IXSCAN: (Index Scan)
Cumulative Total Cost: 20.8465
Cumulative CPU Cost: 87515.2
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 10.4208
Cumulative Re-CPU Cost: 39054.2
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 20.8419
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 3

Arguments:

 Chapter 4. Performance problem determination scenarios 371

MAXPAGES: (Maximum pages for prefetch)
1

PREFETCH: (Type of Prefetch)
NONE

ROWLOCK : (Row Lock intent)
NONE

SCANDIR : (Scan Direction)
FORWARD

TABLOCK : (Table Lock intent)
INTENT NONE

Predicates:

4) Start Key Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

4) Stop Key Predicate
Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

Input Streams:

4) From Object TPCD.O_CK

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_CUSTKEY(A)+Q2.RID

Partition Column Names:

372 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+1: Q2.O_ORDERKEY

Output Streams:

5) To Operator #9

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_CUSTKEY(A)+Q2.RID

Partition Column Names:

+1: Q2.O_ORDERKEY

Objects Used in Access Plan:

Schema: TPCD
Name: O_CK
Type: Index

Time of creation: 2004-06-04-07.02.17.390759
Last statistics update: 2004-06-09-23.20.10.138687
Number of columns: 1
Number of rows: 10003789
Width of rows: -1
Number of buffer pool pages: 296184
Distinct row values: No
Tablespace name: INDEX_TS
Tablespace overhead: 9.500000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 48
Container extent page count: 16
Index clustering statistic: 0.000046
Index leaf pages: 18875
Index tree levels: 3
Index full key cardinality: 1975707
Index first key cardinality: 1975707
Index first 2 keys cardinality: -1
Index first 3 keys cardinality: -1

 Chapter 4. Performance problem determination scenarios 373

Index first 4 keys cardinality: -1
Index sequential pages: 18874
Index page density: 99
Index avg sequential pages: 18874
Index avg gap between sequences:0
Index avg random pages: 0
Fetch avg sequential pages: -1
Fetch avg gap between sequences:-1
Fetch avg random pages: -1
Index RID count: 10003789
Index deleted RID count: 0
Index empty leaf pages: 0
Base Table Schema: TPCD
Base Table Name: ORDERS
Columns in index:

O_CUSTKEY

Schema: ORA
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-06-10-08.32.16.950465
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 236
Number of buffer pool pages: 32173
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: TPCD
Name: ORDERS
Type: Table

Time of creation: 2004-06-04-07.02.15.736633
Last statistics update: 2004-06-09-23.20.10.138687
Number of columns: 9
Number of rows: 10003789
Width of rows: 115
Number of buffer pool pages: 296184
Distinct row values: No
Tablespace name: DATA_TS
Tablespace overhead: 9.500000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 48

374 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Container extent page count: 16
Table overflow record count: 0
Table Active Blocks: -1

 Chapter 4. Performance problem determination scenarios 375

376 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Chapter 5. Capacity planning in an
existing DB2 II environment

In this chapter, we describe a procedure for performing capacity planning in an
environment that currently has DB2 Information Integrator (DB2 II) installed. The
procedure discusses determining unit cost per query, monitoring the rate of
growth of individual queries, defining profiles for categorizing new applications,
and computing CPU capacity and memory requirements for a projected query
workload.

The topics covered are:

� Capacity planning assumptions
� Capacity planning procedure
� Capacity planning new applications

5

© Copyright IBM Corp. 2004. All rights reserved. 377

5.1 Introduction
Capacity planning in a federated server environment is a challenging task given
the complexity of possible configurations, and the autonomous nature of the
remote heterogeneous data sources involved. For example, the federated server
may be a dedicated system (no local data), or a shared system with local data
that may be a single partition (non-DPF) or multiple partition environment (DPF).
Add to that the multiplicity of operating system platforms supported by DB2 II,
and the impact on federated server performance by throughput capabilities of the
remote data sources, we have a difficult challenge in capacity planning.

Then there is the traditional challenge of projecting the exact workload for which
capacity planning must be undertaken, a task considerably more difficult for
customer environments that do not have DB2 II currently installed.

In the following sections, we discuss our capacity planning assumptions, and
propose a procedure for performing capacity planning in an existing DB2 II
environment, which could then possibly be adapted for more complex
environments.

5.2 Capacity planning assumptions
Our objective here is to document a capacity planning procedure for existing DB2
II customer environments based on the facilities and tools available to us, with
the expectation that the reader would then improvise on the process to suit her
particular environment.

We make the following assumptions about the capacity planning procedure
documented here:

� We focus on CPU and memory utilization only, and not on the capacity
requirements of the I/O subsystem.

� The federated server is on a dedicated AIX system. There is no local data
access.

� A significant portion of the query workload is dynamic SQL.

� There are no significant changes to the system environment or access paths
for the query workload. In practice, you would need to keep track of these
changes to ensure that only the appropriate measured metrics for each
significant query are used for capacity planning.

� We assume that the SET SERVER OPTION was not used for the federated
queries. When this statement is issued, the server option changes are
temporary and are not recorded in the global catalog. However, when we

378 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

EXPLAIN the user queries found in the dynamic cache, the server options
correspond to the settings in the global catalog, which may not accurately
reflect the actual access paths generated and executed.

� This procedure does not describe any sophisticated algorithms to use in
selecting the appropriate reporting interval(s) for effective sizing; for example,
one needs to filter out the reporting intervals that have outliers of utilizations,
and only focus on the median, average, or second-highest utilizations,
depending upon the degree of risk tolerated in sizing estimates.

� The accuracy of the procedure depends upon gathering accurate metrics
over a representative interval (large enough sample), and being able to
project a future workload that includes the number of concurrent users, the
frequency of existing queries, as well as the profile and frequency of new
queries.

5.3 Capacity planning procedure
It is important to understand the following underpinnings of the capacity planning
procedure in order to appreciate its strengths and limitations and evaluate its
efficacy in your particular environment.

� Dynamic SQL snapshot information in the dynamic cache contains, along
with other information, accurate metrics about the text of each query
executed by the user, the number of executions, the total user and system
CPU time, the total elapsed time, and the number of rows returned to the
user.

The dynamic cache also contains the SQL fragment executed at the remote
data source. However, the metrics of particular relevance to this SQL
fragment are the SQL text, the number of rows returned (to the federated
server), the number of executions, and the total elapsed time. A limitation is
that the total CPU time is always zero, and there is no direct mechanism of
relating this SQL fragment to the user’s query.

This information is used to:

– Determine the unit CPU cost of each query.

– Project the frequency of query execution in future.

– Define a profile of queries based on the number and type of data sources
accessed and the number of rows returned from each data source.

Attention: We ran a number of controlled measurements in our P650 8-way
32 GB AIX 5.2 environment using select queries against 10 GB of TPCD data
at remote DB2, Oracle and SQL Server data sources, and found our estimates
to be within a couple percent of actual utilization.

 Chapter 5. Capacity planning in an existing DB2 II environment 379

� The db2 get snapshot for dynamic sql for <dbname> command for listing
the contents of the dynamic cache, or the use of the equivalent SQL table
function ... FROM TABLE(SNAPSHOT_DYN_SQL(‘’,-2))

� The DB2 EXPLAIN facility’s db2exfmt command for explaining the SQL
statement query text in the dynamic cache.

It is used for establishing the relationship between the user query and the
SQL fragment in the dynamic cache. More on this later in 5.3.1, “Capacity
planning procedure overview” on page 381.

� The db2 get snapshot for db on <dbname> command is used to:

– Determine the high water mark for concurrent connections to the federated
server.

– Determine shared sort heap utilization for memory estimation.

� The db2 get snapshot for dbm command is used to determine memory
utilization of the private sort heap and other heaps.

� The db2batch utility is used in special situations when accurate metrics are
not available for a given query from the dynamic cache.

� The Event Monitor can provide very detailed information on each operation,
such as elapsed time and CPU utilization by query. However, it currently does
not provide information about access to remote data sources, and its
overhead at peak intervals may not be acceptable. It is primarily a problem
determination tool.

� The sar operating system’s command to obtain the average CPU utilization
during the monitoring interval. This is used to establish the capture ratio for
the monitored workload.

The capture ratio represents the ratio of CPU utilization as measured by the
dynamic cache metrics and the CPU utilization measured by the operating
system’s sar command. The difference varies by the nature of the workload
and represents other DB2 and system processes’ CPU consumption not
captured in the dynamic cache metrics, but should be factored into sizing the
CPU for a projected workload. More on this later in 5.3.1, “Capacity planning
procedure overview” on page 381.

� The vmstat operating system’s command to obtain the high water mark
memory utilization.

Attention: Our controlled measurements in a dedicated federated server
environment show very little difference between operating system
measured CPU utilization and that obtained from the dynamic cache.
However, this may not apply in your environment, and may be worth
evaluating in your own environment.

380 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

5.3.1 Capacity planning procedure overview
Figure 5-1 on page 382 provides an overview of the steps involved, as follows:

1. Step 1: Establish environment.

This step involves setting the appropriate DB2 monitor switches, creating the
EXPLAIN tables, creating a performance warehouse to store the snapshot
results of the dynamic cache, and summary results of utilization.

2. Step 2: Capture runtime metrics.

This step involves choosing the representative monitoring interval, capturing
the contents of the dynamic cache at representative intervals, capturing the
operating system measure of CPU and memory during these intervals,
explaining the SQL statements in the dynamic cache, and establishing the
relationship between remote SQL fragments in the user query.

3. Step 3: Summarize monitored intervals information.

This step involves summarizing the information about user queries, and their
corresponding query fragments and EXPLAIN output for each monitored
interval. This includes the CPU times, elapsed times and number of rows
processed.

4. Step 4: Identify reporting interval.

This step involves identifying which of the various runtime metrics captured in
the previous step are most relevant to computing the unit CPU cost and
memory utilization for the workload.

5. Step 5: Generate the utilization report.

This step involves generating the unit CPU cost per query, total memory
utilization, and projected growth rate of workload from the reporting interval
identified in the previous step.

6. Step 6: Estimate capacity for the anticipated future growth.

This step involves a spread sheet computation of identifying the queries in a
future workload, their frequency of execution, and throughput in order to
estimate CPU and memory capacity requirements for the anticipated
workload.

Each of these steps is elaborated on in the following sections.

 Chapter 5. Capacity planning in an existing DB2 II environment 381

Figure 5-1 Capacity planning procedure overview

Step 1: Establish environment
The following items need to be established before ongoing capacity planning
related monitoring can begin:

1. Set the DB2 monitor switches.

In order to gather the dynamic SQL, buffer pool, and sort memory utilization
information in the snapshot monitor, the DFT_MON_STMT,
DFT_MON_BUFPOOL, and DFT_MON_SORT switches must be set as
shown in Example 5-1.

Example 5-1 Set the DB2 monitor switches

$ db2 -t update dbm cfg using dft_mon_stmt on;
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.
$ db2 -t update dbm cfg using dft_mon_bufpool on;
DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.
$ db2 -t update dbm cfg using dft_mon_sort on;

Step 4: Identify reporting interval

Step 3: Summarize monitored intervals information

Step 1: Establish environment

Step 5: Generate the utilization report

Step 6: Estimate capacity for the anticipated future growth

Step 2: Capture runtime metrics

382 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

DB20000I The UPDATE DATABASE MANAGER CONFIGURATION command completed
successfully.

2. Create the EXPLAIN tables.

First create a user for the performance warehouse, and then create the
EXPLAIN tables for that user’s schema. The EXPLAIN tables are created
using the EXPLAIN.DDL script in the $HOME/sqllib/misc/ directory, as
shown in Example 5-2, where $HOME is the DB2/II instance owner's home
directory. On Windows, the EXPLAIN.DDL script can be found in c:\Program
files\IBM\SQLLIB\misc. EXPLAIN tables are used for determining the
relationship between the user query and remote SQL fragments found in the
dynamic cache.

Example 5-2 Create the EXPLAIN tables

$db2 -tvf $HOME/sqllib/misc/EXPLAIN.DDL

3. Create the performance warehouse tables.

There are a number of tables to be created in the performance warehouse, as
shown in Example 5-3 on page 384.

– CREATE SEQUENCE FEDWH.GENSNAPID creates a sequence of name
FEDWH.GENSNAPID. It is used in generating keys for the start and end of
a monitoring interval.

– FEDWH.FEDWH_INSTANCE table that contains the average memory
utilization, maximum connections, operating system recorded CPU (via
sar command), and the computed capture ratio during each monitored
interval.

– FEDWH.FEDWH_SNAPSHOT_DYN_SQL table containing the snapshot
of dynamic cache with an additional “SNAPID” column.

– FEDWH.FEDWH_EXPLAIN_INSTANCE table that stores the relationship
between the explain table contents and the snapshot interval.

– FEDWH.FEDWH_SNAPSHOT_DYN_SQL_INTERVAL table containing
metrics of the dynamic cache for a particular monitoring interval.

– FEDWH.FEDWH_FEDSQL_INTERVAL table containing combined metrics
of the dynamic cache and explain table contents for each query in a
particular monitoring interval.

Note: The EXPLAIN.DDL script file creates EXPLAIN tables in the default
user table space (usually USERSPACE1 if the defaults were taken when
the database was created). You should modify this script to create the
EXPLAIN tables in the desired table space.

 Chapter 5. Capacity planning in an existing DB2 II environment 383

– FEDWH.FEDWH_INSTANCE_REPORT and
FEDWH.FEDWH_FEDSQL_REPORT are tables that contain the
utilization reports.

Example 5-3 Create performance warehouse tables

--Create a sequence at the application server.

CREATE SEQUENCE FEDWH.GENSNAPID;

--Create FEDWH.FEDWH_INSTANCE table contains the average memory utilization,
--maximum connections, operating system recorded CPU (via sar command), and the
--computed capture ratio during each monitored interval.

CREATE TABLE FEDWH.FEDWH_INSTANCE (
 S_SNAPID INTEGER,
 E_SNAPID INTEGER,
 S_SNAPSHOT_TIMESTAMP TIMESTAMP,
 E_SNAPSHOT_TIMESTAMP TIMESTAMP,
 SAR_CPU DECIMAL(4,1),
 CAPTURE_RATIO DECIMAL(6,3),
 MEMORYCONSUMED INTEGER,
 MAXIMUMCONNECTIONS INTEGER
) IN FEDWH_DTS1;

--Create FEDWH.FEDWH_SNAPSHOT_DYN_SQL table containing a snapshot of the
-- dynamic cache

CREATE VIEW FEDWH.VTMP_SNAPSHOT_DYN_SQL

AS SELECT CAST(1 AS INTEGER) AS SNAPID ,DYNSQL.*
FROM TABLE(SNAPSHOT_DYN_SQL('',-2)) AS DYNSQL;

--
CREATE TABLE FEDWH.FEDWH_SNAPSHOT_DYN_SQL

LIKE FEDWH.VTMP_SNAPSHOT_DYN_SQL IN FEDWH_DTS1;
--Drop Dummy VIEW
DROP VIEW FEDWH.VTMP_SNAPSHOT_DYN_SQL;

--Create FEDWH.FEDWH_EXPLAIN_INSTANCE table to store the relationship between
--the explain table contents and the monitoring interval it relates to

CREATE VIEW FEDWH.VTMP_EXPLAIN_INSTANCE

AS SELECT CAST(1 AS INTEGER) AS SNAPID,
T1.EXPLAIN_REQUESTER, T1.EXPLAIN_TIME,T1.SOURCE_NAME,
T1.SOURCE_SCHEMA,T1.SOURCE_VERSION

FROM EXPLAIN_INSTANCE AS T1;

CREATE TABLE FEDWH.FEDWH_EXPLAIN_INSTANCE

384 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

LIKE FEDWH.VTMP_EXPLAIN_INSTANCE IN FEDWH_DTS1;

ALTER TABLE FEDWH.FEDWH_EXPLAIN_INSTANCE ADD CONSTRAINT PK_FW_EXPINST
 PRIMARY KEY
(EXPLAIN_REQUESTER,EXPLAIN_TIME,SOURCE_NAME,SOURCE_SCHEMA,SOURCE_VERSION);
--Drop Dummy VIEW
DROP VIEW FEDWH.VTMP_EXPLAIN_INSTANCE;

--Create FEDWH.FEDWH_SNAPSHOT_DYN_SQL_INTERVAL table that contains the
--metrics of the dynamic cache for a particular monitoring interval

CREATE VIEW FEDWH.VTMP_SNAPSHOT_DYN_SQL_INTERVAL

AS SELECT T1.S_SNAPID, T1.E_SNAPID, T1.S_SNAPSHOT_TIMESTAMP,
T1.E_SNAPSHOT_TIMESTAMP, T2.ROWS_READ,
T2.ROWS_WRITTEN, T2.NUM_EXECUTIONS, T2.NUM_COMPILATIONS,
T2.PREP_TIME_WORST, T2.PREP_TIME_BEST, T2.INT_ROWS_DELETED,
T2.INT_ROWS_INSERTED, T2.INT_ROWS_UPDATED,
T2.STMT_SORTS, T2.TOTAL_EXEC_TIME, T2.TOTAL_SYS_CPU_TIME,
T2.TOTAL_USR_CPU_TIME, T2.STMT_TEXT

FROM FEDWH.FEDWH_INSTANCE AS T1, TABLE(SNAPSHOT_DYN_SQL('',-2)) AS T2 ;
--
CREATE TABLE FEDWH.FEDWH_SNAPSHOT_DYN_SQL_INTERVAL

LIKE FEDWH.VTMP_SNAPSHOT_DYN_SQL_INTERVAL IN FEDWH_DTS1;
--Drop Dummy VIEW
DROP VIEW FEDWH.VTMP_SNAPSHOT_DYN_SQL_INTERVAL;

--Create FEDWH.FEDWH_FEDSQL_INTERVAL table that contains the combined
--metrics of the dynamic cache and explain table contents for each query in a
--particular monitoring interval

CREATE TABLE FEDWH.FEDWH_FEDSQL_INTERVAL(
 S_SNAPID INTEGER,
 E_SNAPID INTEGER,
 STATEMENT_TEXT CLOB,
 NUM_EXECUTIONS BIGINT,
 AVG_CPU_TIME DECIMAL(31,12),
--if required in future -- AVG_STMT_SORTS DECIMAL(31,1),
 SRCSEVER VARCHAR(8),
 RMTQTXT CLOB,
--if required in future -- RM_AVG_EXEC_TIME DECIMAL(31,12),
 RM_AVG_NUM_EXEC DECIMAL(31,1),
 RM_AVG_ROWS DECIMAL(31,2)
) IN FEDWH_DTS1;

--Create FEDWH.FEDWH_INSTANCE_REPORT and FEDWH.FEDWH_FEDSQL_REPORT that
--contains the utilization reports at various times

 Chapter 5. Capacity planning in an existing DB2 II environment 385

CREATE TABLE FEDWH.FEDWH_INSTANCE_REPORT (
 REPORT_ID INTEGER,
 REPORT_DATE DATE,
 TOTAL_INTERVAL INTEGER,
 SAR_CPU DECIMAL(4,1),
 CAPTURE_RATIO DECIMAL(4,3),
 MEMORYCONSUMED INTEGER,
 MAXIMUMCONNECTIONS INTEGER
) IN FEDWH_DTS1;

CREATE TABLE FEDWH.FEDWH_FEDSQL_REPORT(
 REPORT_ID INTEGER,
 STATEMENT_TEXT CLOB,
 NUM_EXECUTIONS BIGINT,
 EXEC_PER_SEC DECIMAL(31,10),
 AVG_CPU_TIME DECIMAL(31,12),
-- if required in future -- AVG_EXEC_TIME DECIMAL(31,12),
 AVG_STMT_SORTS DECIMAL(31,1),
 SRCSEVER VARCHAR(8),
 RMTQTXT CLOB,
-- if required in future -- RM_AVG_EXEC_TIME DECIMAL(31,12),
 RM_AVG_NUM_EXEC DECIMAL(31,1),
 RM_AVG_ROWS DECIMAL(31,2)
) IN FEDWH_DTS1;

4. Rebind the tools used.

The isolation levels of the db2batch (default RR) and db2exfmt (default CS)
commands should match the isolation level of the SQL query being
processed.

Example 5-4 shows an example of binding db2batch with isolation level of
cursor stability (CS), while Example 5-5 shows db2exfmt being bound with
isolation level uncommitted read (UR).

Example 5-4 Bind db2batch with CS isolation level

$ cd $HOME/sqllib/bnd
$ db2 bind db2batch.bnd blocking all grant public isolation cs

Example 5-5 DBM CFG parameter settings affecting connections

$ cd $HOME/sqllib/bnd
$ db2 bind db2exfmt.bnd blocking all grant public isolation ur

Step 2: Capture runtime metrics
Once the capacity planning environment has been established, runtime metrics
need to be collected on an ongoing basis during the day over an extended period

386 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

of time (months) at intervals that represent heavy or peak processing on the
system.

Each organization tends to have different representative intervals, and it is up to
the database administrator to identify them in their organization. For example,
the weekday representative intervals may be between 10 a.m. and 11 a.m, and 4
p.m. and 5 p.m, while the weekend representative intervals may be between 2
p.m. and 3 p.m.

The following steps must be followed for each representative interval:

1. No package cache overflows.

Ensure that the contents of the dynamic cache are in a steady state with very
few or no overflows, so that information about queries executing during the
representative interval are not lost. Example 5-6 shows the snapshot
command to determine the state of the dynamic cache.

Example 5-6 Checking the state of the package cache

$ db2 get snapshot for db on fedserv|grep "Package cache"
Package cache lookups = 71321
Package cache inserts = 18
Package cache overflows = 0
Package cache high water mark (Bytes) = 294977
$ db2 get db cfg for fedserv|grep -e "MAXAPPLS" -e "PCKCACHESZ"
 Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4)
 Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8)
 Max number of active applications (MAXAPPLS) = 200

The key field to check is the Package cache overflows field, which should
ideally be zero. If not, tune the package cache (database configuration
parameter PCKCACHESZ) to avoid overflows. Refer to the IBM Redbook
DB2 UDB ESE V8 non-DPF Performance Guide for High Performance OLTP
and BI, SG24-6432, for details on tuning PCKCACHESZ.

2. Issue a dynamic SQL snapshot at the start of the monitoring interval.

The objective is to capture details about all the queries in the dynamic cache
and store it in the FEDWH.FEDWH_SNAPSHOT_DYN_SQL performance
warehouse table with an identifier in the SNAPID column, as shown in
Example 5-7.

Example 5-7 Capture dynamic SQL snapshot into performance warehouse table

VALUES(NEXTVAL FOR FEDWH.GENSNAPID);
INSERT INTO FEDWH.FEDWH_SNAPSHOT_DYN_SQL SELECT PREVVAL FOR
FEDWH.GENSNAPID,DYNSQL.* FROM TABLE(SNAPSHOT_DYN_SQL('',-2)) AS DYNSQL WHERE
NUM_EXECUTIONS>0;

 Chapter 5. Capacity planning in an existing DB2 II environment 387

The NEXTVAL expression generates and returns the next value for the
sequence FEDWH.GENSNAPID. The predicate NUM_EXECUTIONS > 0 is
meant to exclude dynamic cache entries that have no successful executions.

Example 5-8 is an example of snapshot output using the get snapshot for
dynamic sql ... command. Some of the key fields are highlighted.

Example 5-8 Dynamic SQL snapshot

$db2 get snapshot for dynamic sql on fedserv

 Dynamic SQL Snapshot Result

 Database name = FEDSERV

 Database path = /data1/kawa/kawa/NODE0000/SQL00001/

....................lines have been removed........................

 Number of executions = 13826
 Number of compilations = 1
 Worst preparation time (ms) = 44
 Best preparation time (ms) = 44
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 0
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 27644
 Statement sort overflows = 0
 Total sort time = 13823
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 4601.005432
 Total user cpu time (sec.ms) = 780.960000
 Total system cpu time (sec.ms) = 160.310000
 Statement text = SELECT 'Q03_q3', L_ORDERKEY,
SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE, O_ORDERDATE,

Note: Every start monitoring interval SNAPID value would have to be
different. It is used as an identifier for the start and end of a monitoring
interval.

388 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

O_SHIPPRIORITY FROM db2.CUSTOMER, db2.ORDERS, ora.LINEITEM
WHERE C_CUSTKEY BETWEEN 1 AND 100 AND C_CUSTKEY = O_CUSTKEY AND
L_ORDERKEY = O_ORDERKEY AND O_ORDERDATE < DATE('1995-03-15') AND
L_SHIPDATE > DATE('1995-03-15') GROUP BY L_ORDERKEY, O_ORDERDATE,
O_SHIPPRIORITY ORDER BY REVENUE DESC, O_ORDERDATE FETCH FIRST 10
ROWS ONLY

................lines have been removed...........................

 Number of executions = 13826
 Number of compilations = 13826
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 1686501
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0
 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 57.505651
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = [ORASERV] SELECT A0."L_ORDERKEY",
A0."L_EXTENDEDPRICE", A0."L_DISCOUNT" FROM "IITEST"."LINEITEM" A0 WHERE
(A0."L_ORDERKEY" = :H0) AND (TO_DATE('19950315 000000','YYYYMMDD HH24MISS') <
A0."L_SHIPDATE") ORDER BY 1 ASC, A0."L_SHIPDATE" ASC

............lines have been removed.........................

 Number of executions = 13822
 Number of compilations = 13822
 Worst preparation time (ms) = 0
 Best preparation time (ms) = 0
 Internal rows deleted = 0
 Internal rows inserted = 0
 Rows read = 6330476
 Internal rows updated = 0
 Rows written = 0
 Statement sorts = 0

 Chapter 5. Capacity planning in an existing DB2 II environment 389

 Buffer pool data logical reads = 0
 Buffer pool data physical reads = 0
 Buffer pool temporary data logical reads = 0
 Buffer pool temporary data physical reads = 0
 Buffer pool index logical reads = 0
 Buffer pool index physical reads = 0
 Buffer pool temporary index logical reads = 0
 Buffer pool temporary index physical reads = 0
 Total execution time (sec.ms) = 108.711819
 Total user cpu time (sec.ms) = 0.000000
 Total system cpu time (sec.ms) = 0.000000
 Statement text = [DB2SERV] SELECT A1."O_ORDERKEY",
A1."O_ORDERDATE", A1."O_SHIPPRIORITY" FROM "TPCD"."CUSTOMER" A0,
"TPCD"."ORDERS" A1 WHERE (1 <= A0."C_CUSTKEY") AND (A0."C_CUSTKEY" <= 100) AND
(A1."O_ORDERDATE" < '1995-03-15') AND (A1."O_CUSTKEY" <= 100) AND (1 <=
A1."O_CUSTKEY") AND (A0."C_CUSTKEY" = A1."O_CUSTKEY") FOR READ ONLY

.....................lines have been removed.........................

Example 5-8 on page 388 executes the user-entered query that joins data in
DB2 and Oracle data sources 13826 times.

There are two remote SQL fragments that also execute 13826 and 13822
times, respectively. The user-entered SQL consumed 0.246 CPU seconds
per query, which is (((Total user cpu time (sec.ms) + Total system cpu
time (sec.ms))/ (Number of executions)). The DB2 data source returned
458 rows per query, which is ((Rows read) / (Number of executions)), while
the Oracle data source returned 121.98 rows per query.

3. Issue the operating system sar command for the monitoring interval.

The objective is to capture CPU utilization as monitored by the operating
system for the monitoring interval, as shown in Example 5-9 on page 391.

Note: Example 5-8 shows both user-entered SQL statements, as well as
remote SQL fragments, which include the server name in front of the text
like “ [ORASERV] SELECT A?.”colname”....FROM...”.

Note: The Total user cpu time (sec.ms) and Total system cpu time
(sec.ms) fields for the remote SQL fragment are always zero.

390 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Example 5-9 Output of the operating system sar command

bash-2.05b# sar -o tmp.sar 60 10

AIX jamesbay 2 5 00016DFA4C00 08/01/04

19:12:26 %usr %sys %wio %idle
19:13:26 13 5 0 82
19:14:26 12 5 0 83
19:15:26 13 5 0 82
19:16:26 13 5 0 82
19:17:26 12 5 0 82
19:18:26 13 5 0 82
19:19:26 12 5 0 82
19:20:26 13 5 0 82
19:21:26 13 5 0 82
19:22:26 12 5 0 83

Average 13 5 0 82

4. Issue the operating system vmstat command for the monitoring interval.

The objective is to capture memory utilization as monitored by the operating
system for the monitoring interval, as shown in Example 5-10.

Example 5-10 Output of the operating system vmstat command

$vmstat -t 10 60 > vmstat.tmp&

kthr memory page faults cpu time
----- ----------- ------------------------ ------------ ----------- --------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa hr mi se
 2 1 1331974 7006323 0 0 0 0 0 0 1216 3544 1561 1 0 99 0
19:12:26
 2 0 1332002 7006293 0 0 0 0 0 0 9276 22135 18105 13 5 82 0
19:12:36
 2 0 1332002 7006293 0 0 0 0 0 0 9268 22211 18123 13 5 83 0
19:12:46
 2 0 1332001 7006294 0 0 0 0 0 0 9248 22200 18091 13 5 82 0
19:12:56
 1 0 1332002 7006293 0 0 0 0 0 0 9277 22426 18212 12 5 82 0
19:13:06
 1 0 1332002 7006293 0 0 0 0 0 0 9349 23695 18348 13 5 82 0
19:13:16
 1 0 1332003 7006291 0 0 0 0 0 0 9546 22548 18737 12 5 83 0
19:13:26
 1 0 1332003 7006291 0 0 0 0 0 0 9347 22444 18318 13 5 82 0
19:13:36
 1 0 1332003 7006291 0 0 0 0 0 0 9293 22626 18279 12 5 82 0
19:13:46
 1 0 1332002 7006292 0 0 0 0 0 0 9289 22296 18210 12 5 82 0
19:13:56

 Chapter 5. Capacity planning in an existing DB2 II environment 391

 1 0 1332003 7006291 0 0 0 0 0 0 9293 22410 18249 12 5 83 0
19:14:06
 2 0 1332003 7006291 0 0 0 0 0 0 9367 23934 18440 12 5 83 0
19:14:16
 1 0 1332004 7006289 0 0 0 0 0 0 9579 22762 18826 12 5 83 0
19:14:26
 2 0 1332002 7006291 0 0 0 0 0 0 9345 22690 18379 12 5 83 0
19:14:36
 1 0 1332004 7006289 0 0 0 0 0 0 9323 22354 18270 12 5 82 0
19:14:46
 1 0 1332004 7006289 0 0 0 0 0 0 9307 22375 18224 13 5 82 0
19:14:56
 1 0 1332003 7006290 0 0 0 0 0 0 9274 22345 18178 13 6 82 0
19:15:06
 1 0 1332004 7006289 0 0 0 0 0 0 9258 22588 18200 13 5 82 0
19:15:16
 1 0 1332452 7006235 0 0 0 0 0 0 9263 22699 18244 13 5 82 0
19:15:26
 1 0 1332037 7006255 0 0 0 0 0 0 9290 22119 18165 13 5 82 0
19:15:36
kthr memory page faults cpu time
....................lines have been removed............................

The high water mark can be determined as shown in Example 5-11.

Example 5-11 High water mark value of memory utilization

$sed -n '/^ *[0-9]/p' vmstat.tmp|sort -n +3|head -1
1 0 1333548 7004564 0 0 0 0 0 0 9244 22522 18160 12 5 82 0 19:21:56

5. Issue a dynamic SQL snapshot at the end of the monitoring interval.

Use the query with the same SNAPID value shown in Example 5-12 to
capture information from the dynamic cache. The value of SNAPID is 2 and
helps identify the rows in the FEDWH.FEDWH_SNAPSHOT_DYN_SQL table
as defining the bounds of this particular monitoring interval.

Example 5-12 Capture dynamic SQL snapshot into performance warehouse table

VALUES(NEXTVAL FOR FEDWH.GENSNAPID);
INSERT INTO FEDWH.FEDWH_SNAPSHOT_DYN_SQL SELECT PREVVAL FOR
FEDWH.GENSNAPID,DYNSQL.* FROM TABLE(SNAPSHOT_DYN_SQL('',-2)) AS DYNSQL WHERE
NUM_EXECUTIONS>0;

Figure 5-2 on page 393 through Figure 5-4 on page 395 show the contents of
the FEDWH.FEDWH_SNAPSHOT_DYN_SQL table after issuing the SQL
statements shown in Example 5-7 on page 387 and Example 5-12.

392 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 5-2 Contents of FEDWH.FEDWH_SNAPSHOT_DYN_SQL table (1 of 3)

 Chapter 5. Capacity planning in an existing DB2 II environment 393

Figure 5-3 Contents of FEDWH.FEDWH_SNAPSHOT_DYN_SQL table (2 of 3)

394 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 5-4 Contents of FEDWH.FEDWH_SNAPSHOT_DYN_SQL table (3 of 3)

6. Capture the maximum number of connections.

The objective here is to determine the maximum number of concurrent
connections at the end of dynamic SQL snapshot capture by issuing another
snapshot, as shown in Example 5-13.

Example 5-13 Snapshot for maximum concurrent connections

db2 get snapshot for db on fedserv|grep -i conn
First database connect timestamp = 08/01/2004 19:11:23.452131
High water mark for connections = 9
Application connects = 17
Secondary connects total = 0
Applications connected currently = 9

 Chapter 5. Capacity planning in an existing DB2 II environment 395

7. Insert sar, vmstat and get snapshot for db .. command information and
capture ratio into the FEDWH.FEDWH_INSTANCE table.

The average CPU utilization, memory utilization, maximum concurrent
connections, and capture ratio computed for this monitoring interval may be
inserted into the FEDWH.FEDWH_INSTANCE table, as shown in
Example 5-14.

Example 5-14 Insert sar and vmstat info into FEDWH.FEDWH_INSTANCE table

INSERT INTO FEDWH.FEDWH_INSTANCE
(S_SNAPID, E_SNAPID, S_SNAPSHOT_TIMESTAMP, E_SNAPSHOT_TIMESTAMP,
MAXIMUMCONNECTIONS)
SELECT DISTINCT T2.SNAPID,T1.SNAPID, T2.SNAPSHOT_TIMESTAMP,

T1.SNAPSHOT_TIMESTAMP,
(SELECT CONNECTIONS_TOP FROM TABLE(SNAPSHOT_DATABASE('',-2)) AS

SNAP_DB)
 FROM (SELECT * FROM FEDWH.FEDWH_SNAPSHOT_DYN_SQL

WHERE SNAPID= PREVVAL FOR FEDWH.GENSNAPID) T1
 INNER JOIN FEDWH.FEDWH_SNAPSHOT_DYN_SQL T2 ON T1.SNAPID-1=T2.SNAPID;

UPDATE FEDWH.FEDWH_INSTANCE SET SAR_CPU=:averagecpu WHERE E_SNAPID=PREVVAL FOR
FEDWH.GENSNAPID;

UPDATE FEDWH.FEDWH_INSTANCE SET MEMORYCONSUMED=:memoryconsumed WHERE
E_SNAPID=PREVVAL FOR FEDWH.GENSNAPID;

UPDATE
 (SELECT SAR_CPU, CAPTURE_RATIO, S_SNAPID, E_SNAPID, S_SNAPSHOT_TIMESTAMP,

E_SNAPSHOT_TIMESTAMP FROM FEDWH.FEDWH_INSTANCE
WHERE E_SNAPID=PREVVAL FOR FEDWH.GENSNAPID) as inst

SET CAPTURE_RATIO= (((SELECT DECIMAL(SUM(TOTAL_SYS_CPU_TIME+
TOTAL_USR_CPU_TIME)) from FEDWH.FEDWH_SNAPSHOT_DYN_SQL_INTERVAL dynsql WHERE
dynsql.S_SNAPID=inst.S_SNAPID and dynsql.E_SNAPID=inst.E_SNAPID)
/8)/TIMESTAMPDIFF(2,CHAR(inst.E_SNAPSHOT_TIMESTAMP-inst.S_SNAPSHOT_TIMESTAMP))*
100)/SAR_CPU;

In Example 5-14, the highlighted value ‘8’ is the number of processors in our
system. The capture ratio represents the discrepancy in the CPU utilization as
captured in the dynamic cache from all the queries versus the utilization

Note: The High water mark for connections field is actually the highest
number of simultaneous connections to the database since the database
was activated, and not for the monitoring interval. However, it provides a
useful barometer of the workload none the less, if the representative
monitoring interval is valid.

396 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

recorded by the operating system sar command during the monitoring
interval.

The capture ratio is the ratio of the CPU utilization derived from the
cumulative cost for all queries in the dynamic cache with the CPU utilization
obtained from the sar command (SAR_CPU column in the
FEDWH.FEDWH_INSTANCE table for the particular monitoring interval)
within a given monitoring interval, as follows:

CPU utilization as computed from the dynamic cache metrics (CPUDC) =
(((Sum of all queries’ (TOTAL_USR_CPU_TIME + TOTAL_SYS_CPU_TIME))
/(number of CPUs))
/
(monitoring interval))

Capture ratio (CR) = (CPUDC / SAR_CPU)

8. Populate the EXPLAIN tables with SQL statements in the dynamic cache.

The objective is to determine the access paths of the dynamic SQL
statements in the cache and identify the remote SQL fragments
corresponding to each user query.

Example 5-15 shows the script that extracts the user SQL (ignores the remote
SQL fragments by filtering out rows where the CPU time is zero), and then
populates the EXPLAIN tables with the application user’s schema.

Example 5-15 Populate the EXPLAIN tables

db2 connect to fedserv user fedwh using fedwh
Write the extracted contents of the dynamic cache to the checkstatements.out
#file
rm checkstatements.out
db2 -x -r checkstatements.out
"SELECT STMT_TEXT
FROM TABLE(SNAPSHOT_DYN_SQL('',-2)) as dynsql
where NUM_EXECUTIONS > 0 AND
(TOTAL_USR_CPU_TIME+TOTAL_SYS_CPU_TIME) > 0
order by TOTAL_USR_CPU_TIME+TOTAL_SYS_CPU_TIME DESC"
#
#Edit the contents of the checkstatements.out file and write the output to
#checkstatements.sql
#
sed 's/ *$/;/' checkstatements.out>checkstatements.sql
#
#Populate the EXPLAIN tables with all the SQL statements in the
#checkstatements.sql file with the application user’s schema
#
db2 "set current explain mode explain"
db2 "set current schema kawa"
db2 -tvf checkstatements.sql

 Chapter 5. Capacity planning in an existing DB2 II environment 397

db2 "set current explain mode no"
db2 "set current schema fedwh"

This EXPLAIN output will help us to identify such relationships since db2exfmt
output provides the SQL fragment text in the RMTQTXT field of the SHIP
operator (3 and 6), as shown in Example 5-16.

Example 5-16 Sample db2exfmt output with a SHIP operator and RMTQTXT field

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-08-01-19.26.25.607199
EXPLAIN_REQUESTER: FEDWH

Database Context:

 Parallelism: None
 CPU Speed: 4.723442e-07
 Comm Speed: 100
 Buffer Pool size: 78000
 Sort Heap size: 20000
 Database Heap size: 1200
 Lock List size: 100
 Maximum Lock List: 10
 Average Applications: 1
 Locks Available: 1020

Package Context:

 SQL Type: Dynamic
 Optimization Level: 5
 Blocking: Block All Cursors
 Isolation Level: Cursor Stability

Note: As mentioned earlier, there is no direct mechanism to link the remote
SQL fragments in the dynamic cache with their corresponding user SQL
statement.

398 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

---------------- STATEMENT 1 SECTION 201 ----------------
 QUERYNO: 3
 QUERYTAG: CLP
 Statement Type: Select
 Updatable: No
 Deletable: No
 Query Degree: 1

Original Statement:

SELECT 'Q02',C_NAME,O_SHIPPRIORITY
FROM DB2.CUSTOMER OUTER JOIN ORA.ORDERS on C_CUSTKEY=O_CUSTKEY
WHERE C_CUSTKEY = 1

Optimized Statement:

SELECT 'Q02', Q2.C_NAME AS "C_NAME", Q1.O_SHIPPRIORITY AS "O_SHIPPRIORITY"
FROM ORA.ORDERS AS Q1, DB2.CUSTOMER AS Q2
WHERE (+0000000001. = Q1.O_CUSTKEY) AND (Q2.C_CUSTKEY = 1)

Access Plan:

 Total Cost: 150.069
 Query Degree: 1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 15.0003
 NLJOIN
 (2)
 150.069
 6
 /------+-----\
 1 15.0003
 SHIP SHIP
 (3) (6)
 75.0263 75.0425
 3 3
 | |
 1.5e+06 1.5e+07
 NICKNM: DB2 NICKNM: ORA
 CUSTOMER ORDERS

 Chapter 5. Capacity planning in an existing DB2 II environment 399

 1) RETURN: (Return Result)
 Cumulative Total Cost: 150.069
 Cumulative CPU Cost: 145648
 Cumulative I/O Cost: 6
 Cumulative Re-Total Cost: 0.0205163
 Cumulative Re-CPU Cost: 43435.1
 Cumulative Re-I/O Cost: 0
 Cumulative First Row Cost: 150.05
 Estimated Bufferpool Buffers: 6.0461
 Remote communication cost: 25.7189

 Arguments:

 BLDLEVEL: (Build level)
 DB2 v8.1.1.64 : s040509
 ENVVAR : (Environment Variable)
 DB2_EXTENDED_OPTIMIZATION = ON
 STMTHEAP: (Statement heap size)
 8192

 Input Streams:

 5) From Operator #2

 Estimated number of rows: 15.0003
 Number of columns: 3
 Subquery predicate ID: Not Applicable

 Column Names:

 +Q3.O_SHIPPRIORITY+Q3.C_NAME+Q3.$C0

 2) NLJOIN: (Nested Loop Join)
 Cumulative Total Cost: 150.069
 Cumulative CPU Cost: 145648
 Cumulative I/O Cost: 6
 Cumulative Re-Total Cost: 0.0205163
 Cumulative Re-CPU Cost: 43435.1
 Cumulative Re-I/O Cost: 0
 Cumulative First Row Cost: 150.05
 Estimated Bufferpool Buffers: 6.0461
 Remote communication cost: 25.7189

 Arguments:

400 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 EARLYOUT: (Early Out flag)
 NONE
 FETCHMAX: (Override for FETCH MAXPAGES)
 IGNORE
 ISCANMAX: (Override for ISCAN MAXPAGES)
 IGNORE

 Predicates:

 2) Predicate used in Join
 Relational Operator: Equal (=)
 Subquery Input Required: No
 Filter Factor: 1

 Predicate Text:

 (Q1.O_CUSTKEY = Q2.C_CUSTKEY)

 Input Streams:

 2) From Operator #3

 Estimated number of rows: 1
 Number of columns: 2
 Subquery predicate ID: Not Applicable

 Column Names:

 +Q2.C_NAME+Q2.C_CUSTKEY

 4) From Operator #6

 Estimated number of rows: 15.0003
 Number of columns: 1
 Subquery predicate ID: Not Applicable

 Column Names:

 +Q1.O_SHIPPRIORITY

 Output Streams:

 5) To Operator #1

 Estimated number of rows: 15.0003
 Number of columns: 3

 Chapter 5. Capacity planning in an existing DB2 II environment 401

 Subquery predicate ID: Not Applicable

 Column Names:

 +Q3.O_SHIPPRIORITY+Q3.C_NAME+Q3.$C0

 3) SHIP : (Ship)
 Cumulative Total Cost: 75.0263
 Cumulative CPU Cost: 55683
 Cumulative I/O Cost: 3
 Cumulative Re-Total Cost: 0.00726371
 Cumulative Re-CPU Cost: 15378
 Cumulative Re-I/O Cost: 0
 Cumulative First Row Cost: 75.0251
 Estimated Bufferpool Buffers: 3.0461
 Remote communication cost: 9.35938

 Arguments:

 CSERQY : (Remote common subexpression)
 FALSE
 DSTSEVER: (Destination (ship to) server)
 - (NULL).
 JN INPUT: (Join input leg)
 OUTER
 RMTQTXT : (Remote statement)
 SELECT A0."C_CUSTKEY", A0."C_NAME" FROM
"TPCD"."CUSTOMER" A0 WHERE (A0."C_CUSTKEY" = 1) FOR READ ONLY
 SRCSEVER: (Source (ship from) server)
 DB2SERV
 STREAM : (Remote stream)
 FALSE

 Input Streams:

 1) From Object DB2.CUSTOMER

 Estimated number of rows: 1.5e+06
 Number of columns: 1
 Subquery predicate ID: Not Applicable

 Column Names:

 +Q2.C_NAME

 Output Streams:

402 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 2) To Operator #2

 Estimated number of rows: 1
 Number of columns: 2
 Subquery predicate ID: Not Applicable

 Column Names:

 +Q2.C_NAME+Q2.C_CUSTKEY

 6) SHIP : (Ship)
 Cumulative Total Cost: 75.0425
 Cumulative CPU Cost: 89964.6
 Cumulative I/O Cost: 3
 Cumulative Re-Total Cost: 25.0149
 Cumulative Re-CPU Cost: 31457.1
 Cumulative Re-I/O Cost: 1
 Cumulative First Row Cost: 75.0252
 Estimated Bufferpool Buffers: 4
 Remote communication cost: 16.3595

 Arguments:

 CSERQY : (Remote common subexpression)
 FALSE
 DSTSEVER: (Destination (ship to) server)
 - (NULL).
 JN INPUT: (Join input leg)
 INNER
 RMTQTXT : (Remote statement)
 SELECT A0."O_SHIPPRIORITY" FROM "IITEST"."ORDERS" A0
WHERE (0000000001. = A0."O_CUSTKEY") AND (A0."O_CUSTKEY" = :H0)
 SRCSEVER: (Source (ship from) server)
 ORASERV
 STREAM : (Remote stream)
 FALSE

 Input Streams:

 3) From Object ORA.ORDERS

 Estimated number of rows: 1.5e+07
 Number of columns: 3
 Subquery predicate ID: Not Applicable

 Column Names:

 +Q1.RID+Q1.O_SHIPPRIORITY+Q1.O_CUSTKEY

 Chapter 5. Capacity planning in an existing DB2 II environment 403

 Output Streams:

 4) To Operator #2

 Estimated number of rows: 15.0003
 Number of columns: 1
 Subquery predicate ID: Not Applicable

 Column Names:

 +Q1.O_SHIPPRIORITY

Objects Used in Access Plan:

 Schema: DB2
 Name: CUSTOMER
 Type: Nickname
 Time of creation: 2004-06-11-21.33.19.191172
 Last statistics update: 2004-06-11-22.37.58.434937
 Number of columns: 8
 Number of rows: 1500000
 Width of rows: 41
 Number of buffer pool pages: 69156
 Distinct row values: No
 Tablespace name:
 Tablespace overhead: 24.100000
 Tablespace transfer rate: 0.900000
 Source for statistics: Single Node
 Prefetch page count: 32
 Container extent page count: 32

 Schema: ORA
 Name: ORDERS
 Type: Nickname
 Time of creation: 2004-06-11-21.33.10.349783
 Last statistics update: 2004-06-11-22.32.45.545670
 Number of columns: 9
 Number of rows: 15000000
 Width of rows: 38
 Number of buffer pool pages: 443840
 Distinct row values: No
 Tablespace name:
 Tablespace overhead: 24.100000
 Tablespace transfer rate: 0.900000
 Source for statistics: Single Node

404 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 Prefetch page count: 32
 Container extent page count: 32
Executing Connect Reset -- Connect Reset was Successful.

9. Link the EXPLAIN output to the particular monitoring interval.

The EXPLAIN output is associated with a particular monitoring interval, and
this relationship must be recorded in the
FEDWH.FEDWH_EXPLAIN_INSTANCE table, as shown in Example 5-17,
using the SNAPID value of the end of the monitoring interval as the identifier.

Example 5-17 Link EXPLAIN output to particular monitoring interval using SNAPID

INSERT INTO FEDWH.FEDWH_EXPLAIN_INSTANCE
SELECT PREVVAL FOR FEDWH.GENSNAPID, T2.EXPLAIN_REQUESTER,T2.EXPLAIN_TIME,

T2.SOURCE_NAME,T2.SOURCE_SCHEMA,T2.SOURCE_VERSION
FROM FEDWH.EXPLAIN_INSTANCE AS T2
LEFT OUTER JOIN FEDWH.FEDWH_EXPLAIN_INSTANCE AS T3 ON
(T2.EXPLAIN_REQUESTER,T2.EXPLAIN_TIME,T2.SOURCE_NAME,T2.SOURCE_SCHEMA,T2.SOURCE
_VERSION)=(T3.EXPLAIN_REQUESTER,T3.EXPLAIN_TIME,T3.SOURCE_NAME,T3.SOURCE_SCHEMA
,T3.SOURCE_VERSION)
WHERE T3.SNAPID IS NULL
;

10.Compute the metrics from the dynamic cache for this monitoring interval.

The net statistics for this monitoring interval for each query need to be
computed and stored in the FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL
table, as shown in Example 5-18.

Example 5-18 Compute metrics for the monitoring interval and store

INSERT INTO FEDWH.FEDWH_SNAPSHOT_DYN_SQL_INTERVAL
SELECT T3.S_SNAPID, T3.E_SNAPID, T3.S_SNAPSHOT_TIMESTAMP,

T3.E_SNAPSHOT_TIMESTAMP,
T1.ROWS_READ-COALESCE(T2.ROWS_READ,0) AS ROWS_READ,
T1.ROWS_WRITTEN-COALESCE(T2.ROWS_WRITTEN,0) AS ROWS_WRITTEN,
T1.NUM_EXECUTIONS-COALESCE(T2.NUM_EXECUTIONS,0) AS NUM_EXECUTIONS,
T1.NUM_COMPILATIONS-COALESCE(T2.NUM_COMPILATIONS,0) AS NUM_COMPILATIONS,
T1.PREP_TIME_WORST, T1.PREP_TIME_BEST,
T1.INT_ROWS_DELETED-COALESCE(T2.INT_ROWS_DELETED,0) AS INT_ROWS_DELETED,
T1.INT_ROWS_INSERTED-COALESCE(T2.INT_ROWS_INSERTED,0) AS

INT_ROWS_INSERTED,
T1.INT_ROWS_UPDATED-COALESCE(T2.INT_ROWS_UPDATED,0) AS INT_ROWS_UPDATED,

Attention: This EXPLAIN output can also be used to monitor changes in
access paths for a given SQL query over time, and should be used to
select the proper reporting interval as discussed in “Step 4: Identify
reporting interval” on page 414.

 Chapter 5. Capacity planning in an existing DB2 II environment 405

T1.STMT_SORTS-COALESCE(T2.STMT_SORTS,0) AS STMT_SORTS,
T1.TOTAL_EXEC_TIME-COALESCE(T2.TOTAL_EXEC_TIME,0) AS TOTAL_EXEC_TIME,
T1.TOTAL_SYS_CPU_TIME-COALESCE(T2.TOTAL_SYS_CPU_TIME,0) AS
TOTAL_SYS_CPU_TIME,
T1.TOTAL_USR_CPU_TIME-COALESCE(T2.TOTAL_USR_CPU_TIME,0) AS

TOTAL_USR_CPU_TIME, T1.STMT_TEXT
FROM FEDWH.FEDWH_INSTANCE T3
 INNER JOIN FEDWH.FEDWH_SNAPSHOT_DYN_SQL T1 ON T1.SNAPID=T3.E_SNAPID
 LEFT OUTER JOIN FEDWH.FEDWH_SNAPSHOT_DYN_SQL T2 ON
VARCHAR(T1.STMT_TEXT)=VARCHAR(T2.STMT_TEXT) AND T2.SNAPID=T3.S_SNAPID
 WHERE T1.NUM_EXECUTIONS-COALESCE(T2.NUM_EXECUTIONS,0)>0
 AND T3.E_SNAPID=PREVVAL FOR FEDWH.GENSNAPID;

Figure 5-5 on page 407 through Figure 5-8 on page 410 show the contents of
the FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL table. It has information
relating to many intervals.

Important: The statement text of the user-entered query and the query
fragment text are both stored as CLOBs (which can be up to 2 gigabytes
long). In Example 5-18 we had to cast the STMT_TEXT column as
VARCHAR (maximum of 32672 bytes long) in order to perform a
comparison. Should the statement text exceed 32672 bytes, the cast
function truncates the data returned from the CLOB to 32672 bytes and a
false match may occur. A warning message such as “SQL0445W Value
"SELECT A0."L_ORDERKEY", A0."L_EXTENDEDPRICE", A0."L_DISCOUNT" has
been truncated.” is issued.

406 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 5-5 FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL table (1 of 4)

 Chapter 5. Capacity planning in an existing DB2 II environment 407

Figure 5-6 FEDWH.FEDWH_SNAPSHOT_DYN_ INTERVAL table (2 of 4)

408 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 5-7 FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL table (3 of 4)

 Chapter 5. Capacity planning in an existing DB2 II environment 409

Figure 5-8 FEDWH.FEDWH_SNAPSHOT_DYN_INTERVAL table (4 of 4)

Step 3: Summarize monitored intervals information
The information needed for capacity planning resides in the operating system
command output, dynamic cache (FEDWH.FEDWH_SNAPSHOT_DYN_SQL
table), and the explain tables. In this step we combine the information in the
dynamic cache and explain tables and record them in the
FEDWH.FEDWH_FEDSQL_INTERVAL table, as shown in Example 5-19 on
page 411. Figure 5-9 on page 413 and Figure 5-10 on page 414 show the
contents of this table.

The FEDWH.FEDWH_FEDSQL_INTERVAL table correlates the user-entered
query, the fragments associated with it (using the explain table contents), and
computes per-query metrics such as the average CPU time.

410 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Example 5-19 Summarize monitored intervals

INSERT INTO FEDWH.FEDWH_FEDSQL_INTERVAL
WITH INST AS (
SELECT
 S_SNAPID
 ,E_SNAPID
 FROM FEDWH.FEDWH_INSTANCE INST
 WHERE E_SNAPID=PREVVAL FOR FEDWH.GENSNAPID
)
,EXPLN AS (
SELECT
 ESTMT2.STATEMENT_TEXT
 ,EARG1.RMTQTXT
 ,EARG1.SRCSEVER
 FROM INST
 INNER JOIN FEDWH.FEDWH_EXPLAIN_INSTANCE EINST ON INST.E_SNAPID=EINST.SNAPID
 INNER JOIN FEDWH.EXPLAIN_STATEMENT ESTMT ON
EINST.EXPLAIN_REQUESTER=ESTMT.EXPLAIN_REQUESTER AND
EINST.EXPLAIN_TIME=ESTMT.EXPLAIN_TIME AND EINST.SOURCE_NAME=ESTMT.SOURCE_NAME
AND EINST.SOURCE_SCHEMA=ESTMT.SOURCE_SCHEMA AND
EINST.SOURCE_VERSION=ESTMT.SOURCE_VERSION
--TO GET ,STATEMENT_TEXT
 INNER JOIN (
 SELECT ESTMT2.EXPLAIN_REQUESTER, ESTMT2.EXPLAIN_TIME, ESTMT2.SOURCE_NAME,
ESTMT2.SOURCE_SCHEMA, ESTMT2.SOURCE_VERSION, ESTMT2.EXPLAIN_LEVEL,
ESTMT2.STMTNO, ESTMT2.SECTNO
 ,STATEMENT_TEXT
 FROM FEDWH.EXPLAIN_STATEMENT ESTMT2
 WHERE
 ESTMT2.EXPLAIN_LEVEL='O'
) ESTMT2 ON ESTMT2.EXPLAIN_REQUESTER=ESTMT.EXPLAIN_REQUESTER AND
ESTMT2.EXPLAIN_TIME=ESTMT.EXPLAIN_TIME AND ESTMT2.SOURCE_NAME=ESTMT.SOURCE_NAME
AND ESTMT2.SOURCE_SCHEMA=ESTMT.SOURCE_SCHEMA AND
ESTMT2.SOURCE_VERSION=ESTMT.SOURCE_VERSION AND ESTMT2.STMTNO=ESTMT.STMTNO AND
ESTMT2.SECTNO=ESTMT.SECTNO
--TO GET RMTQTXT AND SRCSEVER
LEFT OUTER JOIN (
 SELECT EARG1.EXPLAIN_REQUESTER, EARG1.EXPLAIN_TIME, EARG1.SOURCE_NAME,
EARG1.SOURCE_SCHEMA, EARG1.SOURCE_VERSION, EARG1.EXPLAIN_LEVEL, EARG1.STMTNO,
EARG1.SECTNO
 ,COALESCE(EARG1.ARGUMENT_VALUE,EARG1.LONG_ARGUMENT_VALUE) AS RMTQTXT
 ,CAST(EARG2.ARGUMENT_VALUE AS VARCHAR(8)) AS SRCSEVER
 FROM FEDWH.EXPLAIN_ARGUMENT EARG1
 INNER JOIN FEDWH.EXPLAIN_ARGUMENT EARG2 ON
EARG2.EXPLAIN_REQUESTER=EARG1.EXPLAIN_REQUESTER AND
EARG2.EXPLAIN_TIME=EARG1.EXPLAIN_TIME AND EARG2.SOURCE_NAME=EARG1.SOURCE_NAME
AND EARG2.SOURCE_SCHEMA=EARG1.SOURCE_SCHEMA AND

 Chapter 5. Capacity planning in an existing DB2 II environment 411

EARG2.SOURCE_VERSION=EARG1.SOURCE_VERSION AND EARG2.STMTNO=EARG1.STMTNO AND
EARG2.SECTNO=EARG1.SECTNO
 AND EARG1.OPERATOR_ID=EARG2.OPERATOR_ID
 WHERE
 EARG1.ARGUMENT_TYPE='RMTQTXT'
 AND EARG1.EXPLAIN_LEVEL='P'
 AND EARG2.ARGUMENT_TYPE='SRCSEVER'
 AND EARG2.EXPLAIN_LEVEL='P'
) EARG1 ON EARG1.EXPLAIN_REQUESTER=ESTMT.EXPLAIN_REQUESTER AND
EARG1.EXPLAIN_TIME=ESTMT.EXPLAIN_TIME AND EARG1.SOURCE_NAME=ESTMT.SOURCE_NAME
AND EARG1.SOURCE_SCHEMA=ESTMT.SOURCE_SCHEMA AND
EARG1.SOURCE_VERSION=ESTMT.SOURCE_VERSION AND EARG1.STMTNO=ESTMT.STMTNO AND
EARG1.SECTNO=ESTMT.SECTNO
 WHERE ESTMT.EXPLAIN_LEVEL='O'
)
,DYNSQL AS
(
SELECT
 INST.S_SNAPID
 ,INST.E_SNAPID
 ,STMT_TEXT
 ,NUM_EXECUTIONS
 ,DECIMAL(TOTAL_USR_CPU_TIME+TOTAL_SYS_CPU_TIME)/DECIMAL(NUM_EXECUTIONS)
AS AVG_CPU_TIME
 ,CAST(DECIMAL(ROWS_READ)/DECIMAL(NUM_EXECUTIONS) AS DECIMAL(31,2)) AS
AVG_ROWS_READ
 ,CAST(DECIMAL(STMT_SORTS)/DECIMAL(NUM_EXECUTIONS) AS DECIMAL(31,1)) AS
AVG_STMT_SORTS
 FROM INST
 INNER JOIN FEDWH.FEDWH_SNAPSHOT_DYN_SQL_INTERVAL DYNSQL ON
INST.S_SNAPID=DYNSQL.S_SNAPID AND INST.E_SNAPID=DYNSQL.E_SNAPID
)
SELECT
 PDYNSQL.S_SNAPID
 ,PDYNSQL.E_SNAPID
 ,PDYNSQL.STMT_TEXT AS STATEMENT_TEXT
 ,PDYNSQL.NUM_EXECUTIONS
 ,PDYNSQL.AVG_CPU_TIME
 ,PDYNSQL.AVG_STMT_SORTS
 ,EXPLN.SRCSEVER
 ,CDYNSQL.STMT_TEXT AS RMTQTXT
 ,CAST(DECIMAL(CDYNSQL.NUM_EXECUTIONS)/DECIMAL(PDYNSQL.NUM_EXECUTIONS)AS
DECIMAL(31,1)) AS RM_AVG_NUM_EXEC
 ,CDYNSQL.AVG_ROWS_READ AS RM_AVG_ROWS
 FROM DYNSQL AS PDYNSQL
 LEFT OUTER JOIN EXPLN ON
VARCHAR(PDYNSQL.STMT_TEXT)=VARCHAR(EXPLN.STATEMENT_TEXT)
 LEFT OUTER JOIN DYNSQL AS CDYNSQL ON
VARCHAR(CDYNSQL.STMT_TEXT)=VARCHAR('['||EXPLN.SRCSEVER||'] '||EXPLN.RMTQTXT)

412 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 WHERE PDYNSQL.AVG_CPU_TIME>0
 ORDER BY PDYNSQL.AVG_CPU_TIME
;

Figure 5-9 Contents of FEDWH.FEDWH_FEDSQL_INTERVAL (1 of 2)

Important: The statement text of the user-entered query and the query
fragment text are both stored as CLOBs (which can be up to 2 gigabytes long).
In Example 5-19 we had to cast the STMT_TEXT column as VARCHAR
(maximum of 32672 bytes long) in order to perform a comparison. Should the
statement text exceed 32672 bytes, the cast function truncates the data
returned from the CLOB to 32672 bytes and a false match may occur. A
warning message “SQL0445W Value "SELECT A0."L_ORDERKEY",
A0."L_EXTENDEDPRICE", A0."L_DISCOUNT" has been truncated.” is issued.

 Chapter 5. Capacity planning in an existing DB2 II environment 413

Figure 5-10 Contents of FEDWH.FEDWH_FEDSQL_INTERVAL (2 of 2)

Step 4: Identify reporting interval
The capturing of metrics needs to occur over an extended period of time in order
to generate a good sample from which to estimate our capacity requirements.

Eventually, there will be a number of rows for each query corresponding to a
particular monitoring interval (identified by the start and end SNAPID pair) in the
FEDWH.FEDWH_FEDSQL_INTERVAL table. There will also be multiple entries
for each monitoring interval in the FEDWH.FEDWH_INSTANCE table with
information regarding average CPU utilization, memory consumption, maximum
number of concurrent connections, and capture ratio.

When a large sample is chosen, there can be wide variations in a query’s CPU
utilization for reasons such as:

� System environment (hardware/software) has changed
� Volume of data accessed has changed
� Access path of the query has changed

414 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� Workload profile has changed—more concurrent connections have increased
contention

It is essential to choose a clean reporting interval (set of monitoring intervals to
consider for utilization computation) that filters out monitoring intervals that may
have metrics that may be distorted by such events, before computing a utilization
report.

Some of these changes can be detected with the information collected such as
access path change for a given query from the EXPLAIN output1, and an
increase in the number of maximum concurrent connections from the snapshot
output. It may be possible to deduce changes in the volume of data from the
EXPLAIN output, but these cannot be definitive. However, detecting the other
changes requires some other mechanisms to be implemented.

The metrics relating to the clean reporting interval may be extracted from the
FEDWH.FEDWH_FEDSQL_INTERVAL into a separate table if required.

Step 5: Generate utilization report
Once the reporting interval has been defined, one can compute the various
utilizations from the FEDWH.FEDWH_FEDSQL_INTERVAL and
FEDWH.FEDWH_INSTANCE tables. The utilization information is recorded in
the FEDWH.FEDWH_INSTANCE_REPORT and
FEDWH.FEDWH_FEDSQL_REPORT tables.

Example 5-20 on page 416 shows the SQL for populating the
FEDWH.FEDWH_INSTANCE_REPORT and
FEDWH.FEDWH_FEDSQL_REPORT tables from the
FEDWH.FEDWH_FEDSQL_INTERVAL and FEDWH.FEDWH_INSTANCE

1 The contents of the FEDWH.EXPLAIN_INSTANCE table,
FEDWH.FEDWH_SNAPSHOT_DYN_SQL and the FEDWH.FEDWH_EXPLAIN_INSTANCE tables
can provide this information.

Attention: As mentioned in the assumptions, this publication does not provide
guidelines on filtering out monitoring intervals that may distort utilization
computations. It is left to the reader to implement appropriate procedures to
ensure that a clean reporting interval of monitoring intervals is used for
computing utilizations for the various queries.

Attention: The worst case values are assumed for the reporting interval—the
lowest capture ratio value, highest value of the maximum number of
connections, highest value of memory consumed, and highest sar CPU
utilization value.

 Chapter 5. Capacity planning in an existing DB2 II environment 415

tables, while Figure 5-11 on page 417 through Figure 5-13 on page 419 show the
contents of the tables.

Example 5-20 Populating the utilization reports

INSERT INTO FEDWH.FEDWH_INSTANCE_REPORT
SELECT CAST(1 AS INTEGER) AS REPORT_ID
 , CURRENT DATE AS REPORT_DATE
 , SUM(TIMESTAMPDIFF(2,CHAR(E_SNAPSHOT_TIMESTAMP-S_SNAPSHOT_TIMESTAMP))) AS
TOTAL_INTERVAL
 , MAX(SAR_CPU) AS SAR_CPU
 , MIN(CAPTURE_RATIO) AS CAPTURE_RATIO
 , MAX(MEMORYCONSUMED) AS MEMORYCONSUMED
 , MAX(MAXIMUMCONNECTIONS) AS MAXIMUMCONNECTIONS
FROM FEDWH.FEDWH_INSTANCE
WHERE S_SNAPID IN (1,3);
--
--NOTE: The 1 and 3 values in CAST(1 AS INTEGER) and S_SNAPID IN (1,3)
--shown above have to be selected by the DBA as the range monitoring interval
--to be used in the computations. It is up to the DBA to make a sound judgement
--about choosing only the representative interval for the utilization reports
--
--The following table may not be populated correctly with SQL since the
--block size of the temporary table space is limited to 32K and SQL query text
--may get truncated with a warning message such as the following
--SQL0445W Value "SELECT A0."L_ORDERKEY", A0."L_EXTENDEDPRICE", A0."L_DISCOUNT"
--has been truncated. SQLSTATE=01004
--In such cases, it might be appropriate to write a program to avoid truncation
--
INSERT INTO FEDWH.FEDWH_FEDSQL_REPORT
WITH FEDINT AS
(SELECT CAST(1 AS INTEGER) AS REPORT_ID,T1.*
 FROM FEDWH.FEDWH_FEDSQL_INTERVAL as T1
 WHERE S_SNAPID IN (1,3)
)
SELECT
 T1.REPORT_ID
 ,T1.STATEMENT_TEXT
 ,NUM_EXECUTIONS
 ,EXEC_PER_SEC
 ,AVG_CPU_TIME
 ,AVG_STMT_SORTS
 ,SRCSEVER
 ,RMTQTXT
 ,RM_AVG_NUM_EXEC
 ,RM_AVG_ROWS
 FROM
 (SELECT FEDINT.REPORT_ID
 , CAST(STATEMENT_TEXT AS VARCHAR(2700)) AS STATEMENT_TEXT

416 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 , SUM(NUM_EXECUTIONS) AS NUM_EXECUTIONS
 , CAST(SUM(NUM_EXECUTIONS)/TOTAL_INTERVAL AS DECIMAL(31,10)) AS
EXEC_PER_SEC
 , MAX(AVG_CPU_TIME) AS AVG_CPU_TIME
 , MAX(AVG_STMT_SORTS) AS AVG_STMT_SORTS
 FROM FEDWH.FEDWH_INSTANCE_REPORT FEDINS INNER JOIN FEDINT ON
FEDINT.REPORT_ID= FEDINS.REPORT_ID
 GROUP BY FEDINT.REPORT_ID,CAST(STATEMENT_TEXT AS
VARCHAR(2700)),TOTAL_INTERVAL
) T1 INNER JOIN
 (SELECT CAST(STATEMENT_TEXT AS VARCHAR(2700)) AS STATEMENT_TEXT
 , SRCSEVER
 , CAST(RMTQTXT AS VARCHAR(500)) AS RMTQTXT
 , AVG(RM_AVG_NUM_EXEC) AS RM_AVG_NUM_EXEC
 , AVG(RM_AVG_ROWS) AS RM_AVG_ROWS
 FROM FEDINT
 GROUP BY CAST(STATEMENT_TEXT AS VARCHAR(2700)),SRCSEVER,CAST(RMTQTXT AS
VARCHAR(500))
) T2
 ON T1.STATEMENT_TEXT=T2.STATEMENT_TEXT;

Figure 5-11 Contents of FEDWH.FEDWH_INSTANCE_REPORT

Important: The statement text of the user-entered query and the query
fragment text are both stored as CLOBs (which can be up to 2 gigabytes long).
In Example 5-20, we had to cast the STATEMENT_TEXT and RMTQTXT
columns as VARCHAR in order to perform a GROUP BY since the block size
of the temporary table space is limited to 32 K. We chose to cast
STATEMENT_TEXT as 2700 characters, and the RMTQTXT as 500
characters. Should these lengths be exceeded, the report may have false
aggregations.

 Chapter 5. Capacity planning in an existing DB2 II environment 417

Figure 5-12 Contents of FEDWH.FEDWH_FEDSQL_REPORT table (1 of 2)

418 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 5-13 Contents of FEDWH.FEDWH_FEDSQL_REPORT table (2 of 2)

Each query’s unit CPU utilization cost
This is computed for each query as follows:

((TOTAL_USR_CPU_TIME + TOTAL_SYS_CPU_TIME) / (NUM_EXECUTIONS))

 Chapter 5. Capacity planning in an existing DB2 II environment 419

If required, one might validate a query’s utilization using the db2batch tool, as
shown in Example 5-21, since it measures actual execution times. The
assumption is that the query is executed in a real production environment.
db2batch can also be used to measure utilization for static SQL.

Example 5-21 db2 batch output

Statement number: 1

SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER_COUNT FROM
ORA.ORDERS WHERE O_ORDERKEY BETWEEN 1 AND 1000000 AND EXISTS
(SELECT * FROM DB2.LINEITEM WHERE
L_ORDERKEY = O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
) GROUP BY O_ORDERPRIORITY ORDER BY O_ORDERPRIORITY

O_ORDERPRIORITY ORDER_COUNT

1-URGENT 45963
2-HIGH 45962
3-MEDIUM 45344
4-NOT SPECIFIED 45856
5-LOW 46207

Number of rows retrieved is: 5
Number of rows sent to output is: 5

...............lines have been removed..............................

 *** Statement Details ***

Attention: In reality, the NUM_EXECUTIONS value must be compared with
the NUM_COMPILATIONS value, which specifies the number of different
compilations for a specific SQL statement. The NUM_COMPILATIONS should
be 1, otherwise it implies that the NUM_EXECUTIONS relate to different
access plans given the multiple compilations that occurred.

This is because some SQL statements issued on different schemas, such as
“SELECT * FROM TEST”, will appear to be the same statement in the
dynamic cache even though they refer to different access plans. The
NUM_COMPILATIONS value must be used in conjunction with
NUM_EXECUTIONS to determine whether a bad compilation environment
may be skewing the results of dynamic SQL snapshot statistics.

420 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Node where statement is executing = 0
Statement type = DYNAMIC
Statement operation = CLOSE
Section number = 1
SQL compiler query cost estimate in timerons = 222926
SQL compiler query cardinality estimate = 5
Statement sorts = 1
Total sort time (ms) = 742
Sort overflows = 0
DMS Rows read = 0
DMS Rows written = 0
Internal rows deleted = 0
Internal rows updated = 0
Internal rows inserted = 0
Fetch count = 5
Statement operation start time = Wed Jul 7 11:10:46 2004
Statement operation stop time = Wed Jul 7 11:10:57 2004
Statement cursor name = DYNCUR
Authorization ID for statement precompile = NULLID
Statement package name = TOOL1E00
Total User CPU Time of statement (s) = 7.050000 seconds
Total System CPU Time of statement (s) = 0.170000 seconds
Subsections = 0
Agents working on statement = 0
Statement Length = 408
Dynamic SQL statement text =
SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER_COUNT FROM
ORA.ORDERS WHERE O_ORDERKEY BETWEEN 1 AND 1000000 AND EXISTS
(SELECT * FROM DB2.LINEITEM WHERE
L_ORDERKEY = O_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
) GROUP BY O_ORDERPRIORITY ORDER BY O_ORDERPRIORITY

...............lines have been removed..............................

 *** Tablespace Snapshot ***

Tablespace Name = TEMP4_TS
Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Asynchronous pool data page reads = 0
Buffer pool data writes = 0

...............lines have been removed..............................

Summary of Results
==================
 Elapsed Agent CPU Rows Rows

 Chapter 5. Capacity planning in an existing DB2 II environment 421

Statement # Time (s) Time (s) Fetched Printed
1 10.824 7.240 5 5

Arith. mean 10.824 7.24
Geom. mean 10.824 7.24

EXPLAIN TABLES have been populated succesfully.

The most important field is Agent CPU Time(s) in the Summary of Results
section, as highlighted. Other fields are drawn from snapshot statistics and may
not reflect information related to this query since these statistics include other
concurrent activity.

Chart the change in the following values for the reporting interval
The values are:

� Capture ratio (CAPTURERATIO column in the FEDWH.FEDWH_INSTANCE
table).

� Memory utilization (MEMORYCONSUMED column in the
FEDWH.FEDWH_INSTANCE table).

� Maximum number of concurrent connections (MAXIMUMCONNECTIONS
column in the FEDWH.FEDWH_INSTANCE table).

� (Memory utilization) / (Maximum number of concurrent connections). This is
an approximation of memory utilization per connection.

� Number of executions (NUM_EXECUTIONS in the
FEDWH.FEDWH_FEDSQL_INTERVAL table) for each query in the dynamic
cache.

Figure 5-14 on page 423 and Figure 5-15 on page 424 chart the maximum
number of connections and number of executions per query over different
monitoring intervals.

422 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure 5-14 Chart of maximum connections per monitoring interval

 Chapter 5. Capacity planning in an existing DB2 II environment 423

Figure 5-15 Chart of number of executions per query

Step 6: Estimate capacity for anticipated future growth
Future growth may involve a combination of one or more of the following
occurrences:

� Introduction of new applications whose query profiles may or may not be
known in detail. These are discussed in 5.4, “Capacity planning new
applications” on page 427.

� Change in the profile of existing queries. This may involve changes in the
access paths and/or volume of data processed. This could be considered to
be new queries whose profiles are better known, and the same approach as
discussed in 5.4, “Capacity planning new applications” on page 427, could be
applied.

� Change in the frequency of execution of existing queries where some
increase, some reduce, and others disappear altogether.

Note: Charts of these values help determine the average, median, or
maximum values in the reporting interval, as well as project future workloads
for sizing.

424 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimate the CPU utilization
The following approach should be used to estimate CPU utilization:

1. Estimate the query workload mix.

If some external domain information is not available, one could project the
queries and their frequency of execution using the charting mechanism
described.

Compute the concurrent query execution mix by taking the projected
maximum number of concurrent connections, and then taking each query and
distributing it in proportion to its frequency of execution.

For example, assume the following information has been gathered:

– Query Q1 consumes 0.5 cpu units and executes 100 times in 10 minutes.

– Query Q2 consumes 1.0 cpu units and executes 50 times in 10 minutes.

– Query Q3 consumes 1.5 cpu units and executes 20 times in 10 minutes.

– Projected maximum number of concurrent connections is 50.

– Capture ratio is 90 percent. The dynamic cache utilization only shows 90
percent of what is shown by the sar command.

The projected maximum number of concurrent connections of 50 should be
assumed to consist of the following concurrent mix of queries Q1, Q2, and
Q3:

– Q1 portion of concurrent connections = 50 x (100 / (100 + 50 + 20)) = 29.4
– Q2 portion of concurrent connections = 50 x (50 / (100 + 50 + 20)) = 14.7
– Q3 portion of concurrent connections = 50 x (20 / (100 + 50 + 20)) = 5.9

2. Estimate CPU.

This can be estimated as follows:

(29.4 x 0.5 + 14.7 x 1 + 5.9 x 1.5) / 0.9 = 42.5 CPU units

CPU percentage used of current system = ((CPU estimate) / (number of
processors)).

Important: The capacity planning estimate is most accurate when the profile
and frequency of execution is well defined, and the throughput requirement is
forecasted adequately.

The charting described in “Step 6: Estimate capacity for anticipated future
growth” on page 424 can be used to extrapolate future values for the number
of executions for each query, as well as the maximum number of concurrent
connections.

 Chapter 5. Capacity planning in an existing DB2 II environment 425

Assuming that the system on which the metrics were collected was a 4-way
processor, the CPU percentage would be calculated as follows:

42.5 / 4 = 10.625% of the current system

If this percent exceeded 80 percent2, then a new system should be
considered. You need to use the vendor’s help in choosing the right system
upgrade.

We also need to add a multiprocessing factor at very high utilizations to
account for contention—maybe a factor of 10 percent.

Estimate the memory requirements
This is an approximate way of estimating memory requirements. Assume that
Table 5-1 shows metrics about maximum concurrent connections, and memory
utilization in the reporting interval.

Table 5-1 Memory utilization versus maximum concurrent connections

We can choose average (21.3 MB), median (21.6 MB), or maximum (23.3 MB).
Memory utilization should therefore be estimated as:

(memory utilization per connection) x 50 = 21.6 x 50 = 1080 MB

2 Organizations may choose to substitute other values depending upon their individual experiences
and practices of their IT environment.

Concurrent connections Memory utilization Memory utilization per
connection

15 280 MB 18.7 MB

15 350 MB 23.3 MB

20 400 MB 20 MB

22 500 MB 22.7 MB

19 410 MB 21.6 MB

Attention: This approach does not take into account any distortions that may
occur due to memory consumption in the file system cache. For the purposes
of this exercise, we feel that such distortions can be ignored. However, our
intention is to draw attention to this possible distortion, so that the reader may
take appropriate action to eliminate this distortion in their sizing exercise (with
appropriate tests) if they felt it to be significant in their particular environment.

426 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

5.4 Capacity planning new applications
The keys to effective capacity planning of new applications are:

� Having a model of different profiles of queries with their estimated unit cost for
a given CPU model.

� Getting a detailed understanding of the new application’s workload, which
includes the individual queries and their access characteristics, frequency of
execution of each query, and the number of concurrent users.

� Estimating capacity required for the new application.

Each of these considerations is discussed in the following sections.

5.4.1 Model of different profiles of queries
For organizations that do not have an existing DB2 II environment, a model
needs to be available from IBM or some other third source that defines
categories of queries with unit CPU costs associated with each category.

Organizations with existing DB2 II environments can build a more accurate
model of their own using information collected about their existing queries during
the various monitoring intervals, as described in “Step 2: Capture runtime
metrics” on page 386 and “Step 5: Generate utilization report” on page 415.
Besides obtaining superior accuracy of CPU utilizations for a query in one’s own
environment, this approach provides the DBA with the ability to define one’s own
custom categories for greater granularity and therefore potentially more accurate
capacity estimates for new applications.

While other factors, such as the number of rows returned to the user, the
maximum number of concurrent users, and the database manager and database
configuration parameters (such as SORTHEAP), also impact resource
consumption, they tend to have a lesser impact than the type of remote data
source and the number of rows returned to the federated server. We therefore
recommend that the information identified in Table 5-2 on page 428 be collected
for all queries in existing DB2 II environments, and be used as the foundation for
defining custom categories for capacity planning of new applications in the
existing DB2 II environment.

Important: The most significant CPU utilization drivers for a federated query
are the types of remote data sources such as DB2, Oracle, or SQL Server; the
number of rows returned from the remote data sources to the federated
server; and the number of interactions between the federated server and the
remote data sources.

 Chapter 5. Capacity planning in an existing DB2 II environment 427

Table 5-2 Query profile model

The query text, unit CPU cost, and number of rows from each data source
described in Table 5-2 can be obtained from the
FEDWH.FEDWH_FEDSQL_REPORT table contents (see Figure 5-12 on
page 418 and Figure 5-13 on page 419), while the type of each remote data
source (such as Oracle, DB2, or SQL Server) can be determined from the server
definition associated with the nickname.

5.4.2 Determine new application workload
Identifying the new application’s queries, access characteristics, and workload
requires domain expertise that is beyond the scope of this publication.

It is assumed that the DBA has some mechanism of obtaining this information
about the new application. It is reasonable to assume that in many cases
accurate information will not be forthcoming, and the DBA will have to make an
educated guess about the kind of information described in Table 5-2 for each
query.

5.4.3 Estimate capacity for the new application
The critical process is choosing corresponding queries in Table 5-2 that most
closely resemble each query in the new application.

Once each query in the new application has been categorized using Table 5-2,
the unit cost associated with each new query can be used to estimate the
capacity requirements of the new application using the same approach described
in “Step 6: Estimate capacity for anticipated future growth” on page 424.

Query text Unit
CPU
cost

Remote data
source type &
rows returned

....................... Remote data
source type &
rows returned

Important: You should also ascertain the maximum number of concurrent
connections monitored (from the FEDWH.FEDWH_INSTANCE_REPORT
table) in computing the unit costs, and the system configuration involved in
these measurements.

428 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Appendix A. DB2 II V8.2 performance
enhancements

In this appendix, we provide a high-level overview of the performance
enhancements included in DB2 II V8.2.

The topics covered are:

� Fenced wrappers
� Parallelism enhancements
� Updating nickname statistics
� Cache tables
� Informational constraints
� Snapshot monitor enhancements
� Health Center alerts

A

© Copyright IBM Corp. 2004. All rights reserved. 429

Introduction
DB2 II V8.2 has a number of usability, manageability, scalability, and
performance enhancements that add value to the business integration
environment.

The following performance enhancements in DB2 II Version 8.2 require the
application designer and/or DBA to take specific action to achieve performance
benefits:

� Fenced wrappers
� Parallelism enhancements
� Updating nickname statistics
� Cache tables
� Informational constraints
� Snapshot monitor enhancements
� Health Center alerts

Fenced wrappers
Prior to DB2 II V8.2, wrappers ran in “trusted” mode, which meant that all
wrappers ran in the main db2agent created for each user. While this mode
facilitates a certain efficiency, it has the following drawbacks:

� Poorly written wrappers can crash the federated engine.

� Complicates problem determination.

� No resource sharing, since each db2agent loads a separate copy of the
wrapper and the data source client modules. This has a potential negative
impact on scalability due to memory utilization of each db2agent for the
wrapper.

In DB2 V8.2, a “fenced” mode wrapper option is provided, which eliminates these
disadvantages. A new wrapper option DB2_FENCED is provided, which, when

Note: In this appendix, we briefly describe only those performance
enhancements in DB2 II Version 8.2 that the application designer and/or DBA
need to take specific action to achieve performance benefits.

DB2 II Version 8.2 has a number of performance enhancements that the user
automatically benefits from with no specific action required. They include
Query Rewrite improvements such as improved UNION ALL processing, and
exploitation of intra-partition parallelism in non-partitioned databases on SMP
machines. These enhancements are not described here.

430 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

set to ‘Y’, indicates fenced mode operation, while a value of ‘N’ indicates trusted
mode operation. The default is trusted mode. The SQL ALTER WRAPPER
statement can be used to modify the setting of an existing wrapper.

The advantages of a fenced wrapper are:

� Allows isolation of wrappers, which protects the federated engine from errant
wrapper code, and eases problem determination since it runs in a separate
process.

� Allows resource sharing and improves scalability, since a single copy of the
wrapper can be used by multiple db2agent processes. Memory utilization is
reduced.

� Facilitates inter-partition parallelism for nickname data.

Figure A-1 shows the wrapper architecture with trusted and fenced mode.

Figure A-1 Wrapper architecture - Fenced and trusted

When the wrapper is first required for a connection for a type of data source
(such as when the first user selects from a nickname for a table at a data source
of a type supported by the wrapper), DB2 II creates a fenced mode procedure
(fmp) process and loads the wrapper into that process. The wrapper, in turn,
loads the data source client software modules into the fmp process and makes
the connection to the data source. The fmp process can communicate with the
user db2agent process. In a partitioned environment, the fmp process can also
communicate with db2agntp processes created in each of the partitions during
the execution of a query that distributes data from remote data sources to the
partitions so it can be joined in parallel with the local data.

If other DB2 II users need data from the same type of data source, and the
wrapper and data source client are multi-threaded (such as Oracle, SQL Server,
Informix, and DB2), DB2 II uses the same fmp process and establishes another

DB2
Engine

Oracle
Wrapper

Oracle

DB2
Engine

Oracle

DB2_FENCED = "N" (trusted) DB2_FENCED = "Y" (fenced)

Oracle
Wrapper

db2fmp

 Appendix A. DB2 II V8.2 performance enhancements 431

thread in it to support the connection to the type of data source for the new user.
For data source clients that are not thread-safe (such as Sybase and Teradata),
DB2 II has to start a new fmp process to load the wrapper and data source client
to make connections to different data sources for each user.

Parallelism enhancements
DB2 II Version 8.2 supports both inter-partition and intra-partition parallelism for
federated queries.

In the following subsections, we briefly describe the parallelism support:

� Intra-partition parallelism in a non-DPF environment
� Inter-partition parallelism in a DPF environment with local data
� Inter-partition parallelism in a DPF environment without local data

Intra-partition parallelism in a non-DPF environment
Figure A-2 shows intra-partition parallelism support before and after DB2 II V8.2.

Figure A-2 Intra-partition parallelism on SMP systems

Prior to the DB2 II V8.2, any federated query that joined nicknames with local
data was processed serially by the coordinating agent.

In DB2 II V8.2, federated queries that also access local DB2 data can take
advantage of intra-partition parallelism by accessing the local data in parallel.
Access to the nickname data is still performed serially through the coordinating

Oracle

Local data on DB2 II

subagent
processsubagent

processsubagent
process

SMP coordinator
process

DB2 II v8.2

Oracle

Local data on DB2 II

coordinating
agent

DB2 II v8.1

432 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

agent. Intra-partition parallelism can improve query performance, assuming
adequate resources are available.

Intra-partition parallelism is enabled as follows:

� Set the INTRA_PARALLEL database manager configuration parameter to
YES.

� Set the MAX_QUERYDEGREE database manager configuration parameter
to a value greater than 1.

� Set the DFT_DEGREE database configuration parameter to a value greater
than 1, or set the special register CURRENT DEGREE. If you set the
DFT_DEGREE parameter to ANY, the default level of intra-partition
parallelism equals the number of processors on the computer.

Inter-partition parallelism in a DPF environment with local data
Figure A-3 shows inter-partition parallelism support before and after DB2 II V8.2
for federated queries accessing local data in a DPF environment.

Figure A-3 Inter-partition parallelism in a DPF environment with local data

In a DPF environment with federated queries that reference both local and
nickname data, the federated server can distribute the remote data to each of the
database partitions.

Note: Intra-partition parallelism is not dependent on the setting of the
DB2_FENCED wrapper option. It applies to both trusted and fenced mode
operations.

In DB2 II V8.1,
nickname data and
partitioned data can
only be joined serially
at the coordinator
partition.

In DB2 II 8.2, nickname
data can be distributed
to all partitions. Joins to
local partitioned data
can execute in parallel.

Nickname data

Local partitioned data

 Appendix A. DB2 II V8.2 performance enhancements 433

Prior to DB2 II V8.2, remote nickname data and the local partitioned data were
processed serially at a single coordinator partition, as shown in the top portion of
Figure A-3 on page 433.

In DB2 V8.2, the federated server may choose to distribute the nickname data to
the various database partitions for parallel processing with the local partitioned
data, as shown in the bottom portion of Figure A-3 on page 433.

Selection of inter-partition parallelism by the optimizer can result in significant
performance gains for federated queries joining nickname data with local
partitioned data, since it avoids having all join processing occur serially at the
coordinator node.

Such inter-partition parallelism for nickname data is enabled by setting the
DB2_FENCED wrapper option to ‘Y’, as discussed in “Fenced wrappers” on
page 430.

Inter-partition parallelism in a DPF environment without local data
Figure A-4 on page 435 shows inter-partition parallelism support before and after
DB2 II V8.2 for federated queries that only access nickname data (no local data
access involved) in a DPF environment.

Note: The decision to use inter-partition parallelism is made by the optimizer
and is cost based, and may not occur if small volumes of local data are
involved in the join. In other words, just because the wrapper has the
DB2_FENCED option set to 'Y', the optimizer may not estimate that a parallel
plan is the lowest cost plan. A serial plan will be selected if it is the lowest cost
plan.

434 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Figure A-4 Inter-partition parallelism in DPF environment with nickname data

In a DPF environment with federated queries that reference only nickname data,
if there are operations that are not pushed down to the data sources, the
federated server may distribute the remote data to each of the database
partitions to take advantage of CPU parallelism and memory of the partitions to
process the SQL that was not pushed down. Such a plan will be chosen by the
optimizer based on cost and will be selected only if it is the lowest cost plan.

Prior to DB2 II V8.2, remote nickname data was processed serially at the single
coordinator partition, as shown in the top portion of Figure A-4.

In DB2 II V8.2, the federated server may choose to distribute nickname data to
the various database partitions (defined in a computational partition group1) for
parallel processing, as shown in the bottom portion of Figure A-4.

Selection of inter-partition parallelism can significantly impact performance of
federated queries that only join nickname data.

To enable such inter-partition parallelism:

1. A partition group must be defined for the federated database, for example:

CREATE DATABASE PARTITION GROUP NDGRP_0_1_2_3 ON DBPARTITIONNUMS(0,1,2,3)

1 A computational partition group defines a set of partitions for the optimizer to use for performing a
dynamic redistribution operation for join operations. A computational partition group is a database
partition group, other than IBMCATNODEGROUP, that is specified in the system catalog
SYSCAT.DBPARTITIONGROUPS.

Coord. In DB2 II V8.1, two
nicknames can only be
joined serially at the
coordinator partition.

DB2 II V8.2 enables
distribution of nickname
data to a “computational
partition group” for
parallel joins.
Helpful for very large
nickname-only joins

Local partitioned data
Nickname data

Additional benefit:
Nickname access is
asynchronous

 Appendix A. DB2 II V8.2 performance enhancements 435

2. The DB2 registry variable DB2_COMPPARTITIONGROUP must be set to
use this partition group:

db2set DB2_COMPPARTITIONGROUP = NDGRP_0_1_2_3

Updating nickname statistics
The DB2 UDB query optimizer is heavily dependent upon statistics about
nickname objects stored in the global catalog in order to generate an optimal
access plan. This information is retrieved from the remote objects when the
nickname is first created. However, the federated database does not
automatically synchronize the global catalog information with that of the remote
data sources when changes occur. This can result in the generation of less
optimal access plans contributing to poor performance. It is the DBA’s
responsibility to ensure that the global catalog is kept in sync with information at
the remote data sources. Nickname statistics should be updated when the
number of records and column distribution values change in tables referenced by
nicknames at data sources, and the statistics have been updated at the remote
data sources. The federated database DBA should coordinate with DBAs at the
data source regarding scheduling or notification when statistics are updated at
data sources.

Prior to DB2 II V8.2, the DBA has the choice of disruptive synchronization by
dropping and recreating the nickname, or a less disruptive approach of updating
the global catalog manually using SQL.

In DB2 II V8.2, the global catalog may be synchronized via the Statistics Update
facility in the DB2 Control Center or via a stored procedure SYSPROC.NNSTAT
from the command line. You can retrieve the statistics of a single nickname, all
nicknames in a DB2 schema on a specific DB2 server definition, all nicknames
under a given server, all nicknames under a server with a specific schema, or all
the nicknames (when the input parameters are NULL).

The following is an example of using the command line to invoke the
SYSPROC.NNSTAT stored procedure for all nicknames on the federated server
FEDSERV.

CALL SYSPROC.NNSTAT(’ORASRV1’,’NULL’,’NULL’,’NULL’,?,?)

Cache tables
In DB2 II Version 8.2, there is a concept similar to MQTs called cache tables,
which provide a look-aside capability. A cache table can improve query

436 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

performance by accessing a local subset of data instead of accessing data
directly from the remote relational data source.

A cache table consists of the following components:

� A nickname on the federated database system with the same column
definitions and same data access as the remote relational data source table.

� One or more user-maintained MQTs that you define on the nickname. The
nickname can contain a subset of high-use data from a remote data source.

� A user-defined replication schedule that is associated with each materialized
query table to keep the local materialized query tables current with your
remote data source.

Figure A-5 illustrates the cache table concept.

Figure A-5 Cache table concept

The cache table has the same name as the nickname component. A cache table
can only be associated with one remote table. The cache table can be a full
replica or partial subset of rows from your remote data source. The cache table
contains local data that is defined by the MQTs associated with it. There needs to

 Appendix A. DB2 II V8.2 performance enhancements 437

be a row-to-row relationship between the records in the source table and the
records in the MQTs of the cache table.

During query processing, the optimizer directs the query to the cache table or the
remote relational data source table.

Cache tables are created using the Cache Table wizard in the DB2 Control
Center. Under the icon for a database, select the icon for Cache Tables, and then
the Create option. After completing all the entries in the wizard, the wizard will
create SQL replication control tables for Capture at the source, the SQL
replication control tables for Apply at the federated database, and the staging
table at the source. For non-DB2 sources, the wizard also creates the Capture
triggers on the source table. Enabling the cache table starts Capture at DB2
sources and Apply at the federated database.

DB2 II uses SQL replication to maintain the data in the cache table MQTs. A
staging table is created at the data source for each source table. At DB2 data
sources, the SQL Replication Capture process is started and reads the data
source log and inserts change records into the staging table. At non-DB2 data
sources, Capture triggers are added to the source table to insert records into the
staging table whenever the source table is updated. The SQL Replication Apply
process at the federated server replicates the changes from the staging table at
the data source into the MQTs of the cache table.

Informational constraints
Informational constraints are rules that the optimizer can use to improve
performance, that the database manager does not enforce.

With DB2 II V8.2, informational constraints may be defined on nicknames to
improve the performance of queries on remote data sources. The following types
of informational constraints may be defined for nicknames:

� Referential constraints
� Check constraints
� Functional dependency constraints
� Primary key constraints
� Unique constraints

The following is an example of defining information constraints on nickname
ALTER NICKNAME account.salary
ADD CONSTRAINT cons1 CHECK(salary > 10000) NOT ENFORCED
ENABLE QUERY OPTIMIZATION;

438 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Snapshot monitor support
In DB2 II V8.2, the snapshot monitor can capture information about federated
data sources and any connected applications at a given time. Snapshots are
useful for determining the status of a federated system. Taking snapshots at
regular intervals helps in trend analysis for capacity planning, forestalling
potential problems, and problem determination.

The dynamic SQL snapshot captures information about query fragments
accessing remote data sources, and provides useful information such as the time
spent at the remote data source, and the number of rows returned from the data
source to the federated server. This information is particularly useful in problem
determination and capacity planning.

The monitor switch STATEMENT must be set to ON to gather this information.
The following command captures federated query and query fragment
information:

get snapshot for dynamic sql on <dbname>

Health Center alerts
DB2 Health Center has added two new health indicators to monitor the status of
the federated nicknames and remote servers. The federated health indicators are
installed when the health monitor is installed. By default, the Health Center does
not activate the federated health indicators.

When the health indicators are activated, an alert is issued when the state of a
nickname or remote server is not normal. The alert may be viewed using the
Health Center or the command line. Federated servers that use AIX, HP-UX,
Linux, Microsoft Windows, and Solaris operating systems support the health
indicators.

The two health indicators are db.fed_nicknames_op_status and
db.fed_servers_op_status, as follows:

� db.fed_nicknames_op_status is the health indicator for nicknames.

This indicates the aggregate health of all the relational nicknames defined in a
database on a DB2 UDB federated server. An alert is generated when a
nickname is invalid, and it provides details about the invalid nicknames and
recommends actions that can be taken to repair them.

� db.fed_servers_op_status is the health indicator for server definitions.

This indicates the aggregate health of all the federated servers defined in a
database on a DB2 UDB federated server. An alert is generated if a remote

 Appendix A. DB2 II V8.2 performance enhancements 439

server is unavailable, and it provides details about the unavailable servers
and recommends actions that can be taken to make them available.

Health checks for nicknames and federated servers are performed at 24-hour
intervals. The Health Monitor uses a simple SQL statement (select <col1>,
<col2>, etc. from nickname fetch 1 row) to determine:

� If the data source is available.

� If the columns of the nickname are still valid. This is how the health check
detects if any columns of the source table have been removed, or have
different names or data types.

If either of the above problems occurs, an “attention” record is created in the
Health Monitor. The health check does not detect if columns have been added to
a source table or if indexes have been added or statistics have changed.

440 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Appendix B. DB2 EXPLAIN facility with
DB2 Information Integrator

In this appendix, we provide examples of using DB2 EXPLAIN facility’s db2exfmt
tool in a DB2 Information Integrator (DB2 II) Version 8.2 environment, and
analyze the access plan of various federated queries involving multiple remote
heterogeneous data sources, as well as local data sources.

The topics covered are:

� Brief review of the DB2 EXPLAIN facility
� db2exfmt overview
� Federated test environment
� db2exfmt examples involving DB2 II

B

© Copyright IBM Corp. 2004. All rights reserved. 441

Brief review of the DB2 EXPLAIN facility
The DB2 EXPLAIN facility allows you to capture information about the
environment and the access plan chosen by the optimizer for static or dynamic
SQL statements. This information can be used to tune the SQL statements, as
well as the database manager configuration to improve performance.

DB2 EXPLAIN captured information includes the following:

� Sequence of operations to process the query

� Cost information

� Predicates and selectivity estimates for each predicate

� Statistics for all objects referenced in the SQL statement at the time that the
EXPLAIN information is captured

The DB2 EXPLAIN facility provides a number of tools to capture, display, and
analyze information about the access plans that the DB2 II global optimizer
chooses for SQL statements.

While the DB2 EXPLAIN facility tools provide a wealth of valuable information
about the access plans and the environment, the following limitations apply:

� The explain output does not explicitly identify the order of processing of the
various access plan operations.

� The access plan listed in the EXPLAIN output is based on the statistics
available at the time of statement compilation. For static SQL this
corresponds to bind/prep time, and may not match the actual runtime
statistics.

� EXPLAIN output shows the access path chosen by the optimizer, but does
not display those paths considered but rejected during cost optimization. For
example, if a materialized query table (MQT) was created with the intent of
enhancing nickname processing performance, it will not be shown in the
EXPLAIN output if the optimizer chooses a different path. It is then left up to
the user’s knowledge to determine whether the MQT was not chosen
because of syntactic limitations (the way the query was written that inhibited
the DB2 optimizer for considering the MQT altogether) or because the DB2
optimizer rejected the MQT for cost reasons.

Since alternative access plans that were generated and evaluated by the
optimizer are not shown in explain output, you cannot tell from just one
explain what operations were restricted from pushdown by pushdown
analysis (PDA). Toggling the server option DB2_MAXIMAL_PUSHDOWN
between 'N' and 'Y' for consecutive explains should show which operations
are restricted from pushdown by PDA, since they will be left in the access
graph plan when DB2_MAXIMAL_PUSHDOWN = 'Y'. Operations that

442 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

disappear from the access plan graph when DB2_MAXIMAL_PUSHDOWN is
toggled from 'N’ to 'Y' are operations that PDA allowed to be pushed down but
were left to the optimizer to decide whether to push down based on cost. This
should be evident when examining the cumulative cost of the plans obtained
with DB2_MAXIMAL_PUSHDOWN='N' and the plan obtained with
DB2_MAXIMAL_PUSHDOWN='Y'.

� EXPLAIN output does not show settings of DB2 II options such as
PUSHDOWN.

Table B-1 identifies the various tools that comprise the DB2 EXPLAIN facility, and
provides a high-level overview comparison of their capabilities.

Table B-1 DB2 EXPLAIN facility

Note: Visual Explain may be accessed from two of the GUI admin tools as
follows:

� Command editor: On the top menu, select Access plan.

� DB2 Control Center: Highlight the icon for a database, and select the
Explain SQL option.

Desired characteristics EXPLAIN
tables

Visual Explain db2exfmt db2expln dynexpln

GUI interface Yes

Text output Yes Yes Yes

“Quick and dirty” Static SQL
analysis

Yes

Static SQL supported Yes Yes Yes Yes

Dynamic SQL supported Yes Yes Yes Yes Yes
(indirectly
using
db2expln)

CLI applications supported Yes Yes Yes

Available to DRDA®
Application Requesters

Yes

Detailed optimizer
information

Yes Yes Yes

Suited for analysis of
multiple statements

Yes Yes Yes Yes

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 443

Access path information is stored in EXPLAIN tables, which can be queried to
retrieve the desired information. Either the GUI tool Visual Explain or the
text-based db2exfmt tool can be used to examine the contents of the EXPLAIN
tables.

We will only be using the db2exfmt tool in our examples. Therefore, we will only
briefly describe the DB2 EXPLAIN tables and the results of db2exfmt in the
following sections.

Please refer to IBM DB2 UDB Administration Guide: Performance,
SC09-4821-00, for complete details about all of the tools mentioned in Table B-1
on page 443.

Table B-2 lists the main EXPLAIN tables, while Figure B-1 on page 446 shows
the relationships between them.

Table B-2 EXPLAIN tables

Information accessible from
within an application

Yes

Desired characteristics EXPLAIN
tables

Visual Explain db2exfmt db2expln dynexpln

Table name Description

EXPLAIN_INSTANCE The main control table for all EXPLAIN information. Each
row in the EXPLAIN tables is explicitly linked to one
unique row in this table.

EXPLAIN_STATEMENTS This table stores the EXPLAIN snapshot if it was
requested. Data is stored as Binary Large Object (BLOB),
which contains the internal representation of the access
plan and decision criteria used by the DB2 optimizer. A
row in the EXPLAIN_INSTANCE refers to multiple rows in
this table.

EXPLAIN_OPERATORS This table contains all the operators needed to satisfy the
query. The types of operators include FETCH, GRPBY,
IXSCAN, MSJOIN, NLJOIN, RIDSCN, SORT, TBSCAN,
TEMP or UNIQUE.

EXPLAIN_ARGUMENTS This table contains the information for each operator; for
example, for a SORT operator, arguments such as
number of rows expected to be sorted are collected.

EXPLAIN_OBJECTS This table identifies the data objects required by the
access plan. Types of objects are indexes, tables, views,
nicknames, and table functions.

444 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

EXPLAIN_STREAM This table represents the input and output data stream
between operators and objects, for example, the number
of columns represented and an estimate of the cardinality.

EXPLAIN_PREDICATE This table identifies which predicates are applied to a
specific operator.

ADVISE_WORKLOAD This table allows users to describe a workload to the
database. Each row in the table represents an SQL
statement in the workload and is described by an
associated frequency. The db2advis tool uses this table to
collect and store work and information.

ADVISE_INDEX This table stores information about recommended
indexes. The table can be populated by the SQL compiler,
the db2advis utility, or a user. This table is used in two
ways:
� To get recommended indexes
� To evaluate indexes based on input about proposed

indexes

Table name Description

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 445

Figure B-1 Relationship of the main EXPLAIN tables

Table B-3 lists the operators that may appear in EXPLAIN output.

Table B-3 Operators in the access plan

Note: EXPLAIN tables can be created by the issuing the db2 -tf EXPLAIN.DDL
command, or automatically by the DB2 Control Center. The EXPLAIN.DDL file
is located in the $HOME/sqllib/misc directory on UNIX/Linux, where $HOME
is the home directory of the DB2/II instance owner and is located in
c:\Program Files\IBM\SQLLIB\misc on Windows.

Operator Function

BTQ Broadcast Table Queue broadcasts data
to several partitions.

DELETE Deletes rows from a table.

446 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

DTQ Directed Table Queue transfers data to a
specific partition.

EISCAN Scans a user-defined index to produce a
reduced stream of rows.

FETCH Fetches columns from a table using spe-
cific record identifier.

FILTER Represents the application of residual
predicates.

GRPBY Groups rows by common values of desig-
nated columns or functions.

HSJOIN Represents a hash join, where two or
more tables are hashed on join columns.

INSERT Inserts rows into a table.

IXAND ANDs together the row identifiers (RIDs)
from two or more index scans.

IXSCAN Scans an index of a table with optional
start/stop conditions, producing an
ordered stream of rows.

LTQ Local Table Queue. Transfers data
between local agents.

LMTQ Local Merge Table Queue. Merges data
transferred between local agents.

MBTQ Merging Broadcast Table Queue.

MDTQ Merging Directed Table queue.

MSJOIN Represents a merge join, where both
outer and inner tables must be in
join-predicate order.

NLJOIN Represents a nested loop join that
accesses an inner table once for each
row of the outer table.

RETURN Represents the return of data from the
query to the user.

RIDSCAN Scans a list of row identifiers (RIDs)
obtained from one or more indexes.

Operator Function

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 447

db2exfmt overview
This tool is used to format the contents of the EXPLAIN tables. Using the sample
federated SQL statement shown in Example B-1, which reports the amount of
business that was billed, shipped, and returned during a period of interest, we
will briefly describe the output of this tool.

Example: B-1 Sample federated SQL statement

SELECT
 L_RETURNFLAG,
 L_LINESTATUS,
 SUM(L_QUANTITY) AS SUM_QTY,
 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE,
 SUM(L_EXTENDEDPRICE * (1-L_DISCOUNT)) AS SUM_DISC_PRICE,
 SUM(L_EXTENDEDPRICE * (1-L_DISCOUNT) * (1+L_TAX)) AS SUM_CHARGE,
 AVG(L_QUANTITY) AS AVG_QTY,
 AVG(L_EXTENDEDPRICE) AS AVG_PRICE,
 AVG(L_DISCOUNT) AS AVG_DISC,
 COUNT(*) AS COUNT_ORDER

RPD For nonrelational wrappers, it shows the
simulated SQL operation that the nonrela-
tional wrapper will be asked to perform.

SHIP Retrieves data from a remote database
source. Used in federated systems.

SORT Sorts rows in the order of specified col-
umns, and optionally eliminates duplicate
entries.

TBSCAN Retrieves rows by reading all required
data directly from the data pages.

TEMP Stores data in a temporary table to be
read back out (possibly multiple times).

TQUEUE Transfers table data between agents.

UNION Concatenates streams of rows from multi-
ple tables.

UNIQUE Eliminates rows with duplicate values, for
specified columns.

UPDATE Updates rows in a table.

Operator Function

448 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

FROM
 ORA.LINEITEM

WHERE
 L_SHIPDATE <= DATE ('1998-12-01') - 90 DAYS
GROUP BY
 L_RETURNFLAG,
 L_LINESTATUS
ORDER BY
 L_RETURNFLAG,
 L_LINESTATUS
;

This SQL statement needs to be explained in order to populate the EXPLAIN
tables.

Once the EXPLAIN tables have been populated, the following command is used
to generate db2exfmt output for this SQL statement:

db2exfmt -d feddb -l -s ora -o db2exfmt.out

The output of db2exfmt is divided into five sections, as follows:

� Explain Instance section
� SQL Statement section
� Access plan graph
� Operator Details section
� Object section

Each of these sections is described below using fragments of db2exfmt output
corresponding to the particular section.

EXPLAIN INSTANCE section
The fragment corresponding to this section is shown in Example B-2.

Example: B-2 EXPLAIN INSTANCE section

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: TOOL1E00
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-15-03.11.32.302527
EXPLAIN_REQUESTER: KAWA

Database Context:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 449

Parallelism: None
CPU Speed: 4.723442e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

The EXPLAIN INSTANCE section lists overall DB2 instance and database
parameter information.

Besides identification details such as the DB2 code base level, requestor name,
and time of request, this section also provides environmental settings in which
the SQL compiler optimized the query. Information provided includes total buffer
pool size (sum of all buffer pools including temporary table spaces), sort heap
size, type of query parallelism, dynamic or static SQL, optimization level, and
isolation levels. The CPU and Communications speeds are used by the optimizer
to compare the capabilities of the remote data source servers during cost
optimization to determine predicate pushdown. This environmental settings are
critical to understanding the optimizer’s decision in arriving at a particular access
plan.

SQL STATEMENT section
Example B-3 lists the section that provides additional information about the SQL
statement, and shows how DB2 Query Rewrite has rewritten the SQL before it is
processed by pushdown analysis. Using global semantics, query rewrite
transforms SQL statements into forms that can be optimized more easily, and as
a result can improve the possible access paths. Queries might be rewritten in
multiple ways, including operation merging, operation movement, and predicate
translation.

Example: B-3 STATEMENT section

---------------- STATEMENT 1 SECTION 1 ----------------
QUERYNO: 1

450 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_QUANTITY) AS SUM_QTY,
 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE *
 (1-L_DISCOUNT)) AS SUM_DISC_PRICE, SUM(L_EXTENDEDPRICE *
 (1-L_DISCOUNT) * (1+L_TAX)) AS SUM_CHARGE, AVG(L_QUANTITY) AS AVG_QTY,
 AVG(L_EXTENDEDPRICE) AS AVG_PRICE, AVG(L_DISCOUNT) AS AVG_DISC,
 COUNT(*) AS COUNT_ORDER
FROM ora.LINEITEM
WHERE L_SHIPDATE <= DATE ('1998-12-01') - 90 DAYS
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS

Optimized Statement:

SELECT Q3.$C0 AS "L_RETURNFLAG", Q3.$C1 AS "L_LINESTATUS", Q3.$C2 AS
 "SUM_QTY", Q3.$C3 AS "SUM_BASE_PRICE", Q3.$C4 AS "SUM_DISC_PRICE",
 Q3.$C5 AS "SUM_CHARGE", (Q3.$C2 / Q3.$C6) AS "AVG_QTY", (Q3.$C3 /
 Q3.$C6) AS "AVG_PRICE", (Q3.$C7 / Q3.$C6) AS "AVG_DISC", Q3.$C6 AS
 "COUNT_ORDER"
FROM
 (SELECT Q2.$C0, Q2.$C1, SUM(Q2.$C2), SUM(Q2.$C3), SUM((Q2.$C3 * (1 -
 Q2.$C4))), SUM(((Q2.$C3 * (1 - Q2.$C4)) * (1 + Q2.$C5))), COUNT(*
), SUM(Q2.$C4)
 FROM
 (SELECT Q1.L_RETURNFLAG, Q1.L_LINESTATUS, Q1.L_QUANTITY,
 Q1.L_EXTENDEDPRICE, Q1.L_DISCOUNT, Q1.L_TAX
 FROM ORA.LINEITEM AS Q1
 WHERE (Q1.L_SHIPDATE <= '09/02/1998')) AS Q2
 GROUP BY Q2.$C1, Q2.$C0) AS Q3
ORDER BY Q3.$C0, Q3.$C1

Two versions of the text of the SQL statement are recorded for each statement
explained.

� The original statement is the code that the SQL compiler receives from the
application. The original SQL statement in db2exfmt shows the SQL
submitted by the user. If the user SQL included any views, their names
appear in the original SQL statement.

� The Optimized statement is reverse translated from the internal compiler
representation of the query.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 451

In case of views, the Optimized statement shows that query rewrite has
obtained the text of any views in the user's SQL statement and combined it
with the SQL submitted by the user so the Optimized statement shows all the
real tables and nicknames (no views) that will need to be accessed to execute
the user’s SQL statement.

To understand how the SQL compiler has rewritten your query for better
optimization, compare the user-written statement text to the internal
representation of the SQL statement. The rewritten statement also shows you
other elements in the environment affecting the SQL statement such as triggers
and constraints. For example, $Cn is the name of a derived column, where n
represents an integer value.

Please refer to the IBM DB2 UDB Administration Guide: Performance,
SC09-4821-00, for a complete description of various elements in the
environment affecting the SQL statement.

An MQT may be used because of decisions by either Query Rewrite or the
optimizer. Query Rewrite has internal rules by which it determines whether an
MQT should be substituted for a nickname, such as on the basis of informational
constraints.

If Query Rewrite makes the substitution:

� The original SQL statement contains the nickname.
� The optimized SQL contains the MQT name.
� The access plan contains the MQT name.

If Query Rewrite internal rules do not cause it to substitute the MQT for the
nickname, but the optimizer determines that the MQT can be substituted for the

Note: Although the translation looks similar to other SQL statements, it
does not necessarily follow correct SQL syntax, nor does it necessarily
reflect the actual content of the internal representation as a whole. This
translation is provided only to allow you to understand the SQL context in
which the SQL optimizer chose the access plan.

Attention: The optimized statement does not necessarily reflect the actual
statement that is executed. For instance, if Query Rewrite caused a routing to
occur to a non-aggregate materialized query table (MQT), then this would not
be reflected in the optimized statement. However, a routing to an aggregate
MQT would be reflected in the optimized statement. The Access Plan section
describes the actual execution plan chosen by the optimizer.

452 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

nickname and the plan using the MQT is lower cost than the plan using the
nickname, then:

� The original SQL statement contains the nickname.
� The optimized SQL contains the nickname.
� The access plan contains the MQT name.

If Query Rewrite internal rules do not cause it to substitute the MQT for the
nickname, and the optimizer determines that the MQT can be substituted for the
nickname but the plan using the MQT is higher cost than the plan using the
nickname, then:

� The original SQL statement contains the nickname.
� The optimized SQL contains the nickname.
� The access plan contains the nickname (the MQT is not used).

If Query Rewrite internal rules do not cause it to substitute the MQT for the
nickname, and the optimizer determines that the MQT cannot be substituted for
the

� The original SQL statement contains the nickname.
� The optimized SQL contains the nickname.
� The access plan contains the nickname (the MQT is not used).

Access plan graph
Example B-4 shows this section of the output as a a graphical representation of
the plan created to execute the SQL statement.

Example: B-4 Access Plan section

Access Plan:

Total Cost: 8.22466e+06
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 6
 SHIP
 (2)
 8.22466e+06
 2.08104e+06
 |

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 453

 5.99861e+07
 NICKNM: ORA
 LINEITEM

At the top of the access plan graph is the total query cost in timerons1 and the
query degree of parallelism used.

The following points can be noted about the graph:

� The graph is made up of objects (nickname ORA.LINEITEM)—operators
(RETURN and SHIP) that are connected by lines. Table B-3 on page 446
defines the function of the operators shown in the db2exfmt output.

� Each operator has a reference number included in parentheses, for example,
the reference number for the SHIP operator is 2. This reference number does
not imply the operator execution order.

� Values above and below the object and operators represent cardinality and
costs, as described below.

The access plan graph should be read as follows:

� Read the graph from the bottom up since it represents the order of the
sub-operations as they would be executed. The RETURN operator at the top
represents the query result.

� For each operator, the legend for the numbers above and below are explained
in the operator with the title ‘RETURN’.

– The number above the operator is the number of rows estimated to be
involved in this sub-operation.

– The reference number for finding details of this operator is in the section
below the access plan graph (in parenthesis).

– The number immediately below the operator is the cumulative estimated
cost expressed in timerons for the sub-operation and the sub-operations
that precede it reading from the bottom up. The incremental estimated
cost of an operation is the number below the operator minus the number
below the operator that precedes it.

– The second number below an operator is an estimated cumulative I/O cost
of the operator.

� For an object such as the ORA.LINEITEM nickname, the value above its
name represents the cardinality of the object as derived from the CARD
column of the SYSCAT.TABLES view in the DB2 II catalog.

1 A timeron is an abstract unit of measure that does not directly equate to any actual elapsed time,
but gives a relative estimate of the resources required by the database manager to execute an access
plan. The resources calculated in the estimate include weighted CPU, I/O, and remote
communication costs.

454 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

The SHIP operator is unique to a DB2 II environment and indicates that an SQL
statement is sent to a remote federated data source for processing. All operators
and objects above a SHIP operator indicate operations that are performed locally
at the federated server and not pushed down to the remote federated data
source. The operations performed at the federated server appear as operators in
the db2exfmt access plan graph, and operations pushed down to data sources
do not appear in the access plan graph. The operations pushed down to the data
sources can be found in the RMTQTXT field in the detail sections for the SHIP
operators below the access plan graph in the db2exfmt output.

The access plan shown in Example B-4 on page 453 estimates that a total of six
rows will be returned to the requestor at an estimated cost of 8.22466e+06
timerons. It lists the cardinality of the ORA.LINEITEM nickname to be
5.99861e+07 rows, and that the SHIP operator returns six rows to the federated
server at the estimated cost of 8.22466e+06 timerons. Since there are no objects
or operators (other than RETURN) above the SHIP operator, it indicates that all
predicates, GROUP BY and ORDER BY were pushed down to the remote
federated data source.

OPERATOR DETAILS section
Example B-5 shows this section containing detailed information for each operator
listed in the access plan graph.

Example: B-5 OPERATOR DETAILS section

2) SHIP : (Ship)
Cumulative Total Cost: 8.22466e+06
Cumulative CPU Cost: 1.74852e+11
Cumulative I/O Cost: 2.08104e+06
Cumulative Re-Total Cost: 8.1887e+06
Cumulative Re-CPU Cost: 9.87231e+10
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 8.22466e+06
Estimated Bufferpool Buffers: 0
Remote communication cost:11.8594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."L_RETURNFLAG", A0."L_LINESTATUS", SUM(A0."L_QUANTITY"),
SUM(A0."L_EXTENDEDPRICE"), SUM((A0."L_EXTENDEDPRICE" * (1 -
(A0."L_DISCOUNT")))), SUM(((A0."L_EXTENDEDPRICE" * (1 - (A0."L_DISCOUNT"))) *

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 455

(1 + A0."L_TAX"))), (SUM(A0."L_QUANTITY") / COUNT(*)), (SUM(
A0."L_EXTENDEDPRICE") / COUNT(*)), (SUM(A0."L_DISCOUNT") / COUNT(*)), COUNT(*)
FROM "IITEST"."LINEITEM" A0 WHERE (A0."L_SHIPDATE" <= TO_DATE('19980902
000000','YYYYMMDD HH24MISS')) GROUP BY A0."L_RETURNFLAG", A0."L_LINESTATUS"
ORDER BY 1 ASC, 2 ASC

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
TRUE

Input Streams:

1) From Object ORA.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINESTATUS+Q1.L_RETURNFLAG+Q1.L_SHIPDATE

Output Streams:

2) To Operator #1

Estimated number of rows: 6
Number of columns: 12
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_RETURNFLAG(A)+Q3.L_LINESTATUS(A)
+Q4.COUNT_ORDER+Q4.AVG_DISC+Q4.AVG_PRICE
+Q4.AVG_QTY+Q4.SUM_CHARGE+Q4.SUM_DISC_PRICE
+Q4.SUM_BASE_PRICE+Q4.SUM_QTY+Q4.L_LINESTATUS
+Q4.L_RETURNFLAG
+NONE

The reference number in the access plan graph is used to identify the details of a
specific operator in this section.

Note: We have only shown the SHIP operator portion of this section in
Example B-5 and not the RETURN operator.

456 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Besides the cumulative cost information provided for each operator, additional
categories of information are also listed for specific operators as follows:

� Arguments list the options for the particular operator.

For a SHIP operator:

– SRCSERVER defines the remote data source server name as defined in
the SERVERNAME column of the SYSCAT.SERVERS view in the DB2 II
catalog.

– RMTQTXT shows the SQL statement to be sent to the data source, in the
remote statement text.

Compare the RMTQTXT with the original SQL statement and the optimized
SQL statement to determine operations/functions not pushed down to the
remote federated data source.

� Input streams describe the source of the rows processed by the operator,
including the estimated number of rows, and number and names of the
columns involved.

� Output streams describe the destination of the rows processed by the
operator, including the estimated number of rows, and number and names of
the columns involved.

Objects section
Example B-6 shows the objects used by the access plan and includes tables,
indexes, and nicknames. For each of these objects, it lists statistics information
as well as other estimates used by the optimizer in arriving at the access plan.

Example: B-6 Objects section

Objects Used in Access Plan:

Schema: MSS
Name: NATION
Type: Nickname

Time of creation: 2004-06-18-13.29.41.931813
Last statistics update:
Number of columns: 4
Number of rows: 25
Width of rows: 48
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 457

Prefetch page count: 32
Container extent page count: 32

Complete db2exfmt output
Example B-7 is a complete listing of the db2exfmt output for the sample federated
statement.

Example: B-7 db2exfmt output for the sample federated statement

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: TOOL1E00
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-15-03.11.32.302527
EXPLAIN_REQUESTER: KAWA

Database Context:

Parallelism: None
CPU Speed: 4.723442e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 1 ----------------

458 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_QUANTITY) AS SUM_QTY,
 SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE *
 (1-L_DISCOUNT)) AS SUM_DISC_PRICE, SUM(L_EXTENDEDPRICE *
 (1-L_DISCOUNT) * (1+L_TAX)) AS SUM_CHARGE, AVG(L_QUANTITY) AS AVG_QTY,
 AVG(L_EXTENDEDPRICE) AS AVG_PRICE, AVG(L_DISCOUNT) AS AVG_DISC,
 COUNT(*) AS COUNT_ORDER
FROM ora.LINEITEM
WHERE L_SHIPDATE <= DATE ('1998-12-01') - 90 DAYS
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS

Optimized Statement:

SELECT Q3.$C0 AS "L_RETURNFLAG", Q3.$C1 AS "L_LINESTATUS", Q3.$C2 AS
 "SUM_QTY", Q3.$C3 AS "SUM_BASE_PRICE", Q3.$C4 AS "SUM_DISC_PRICE",
 Q3.$C5 AS "SUM_CHARGE", (Q3.$C2 / Q3.$C6) AS "AVG_QTY", (Q3.$C3 /
 Q3.$C6) AS "AVG_PRICE", (Q3.$C7 / Q3.$C6) AS "AVG_DISC", Q3.$C6 AS
 "COUNT_ORDER"
FROM
 (SELECT Q2.$C0, Q2.$C1, SUM(Q2.$C2), SUM(Q2.$C3), SUM((Q2.$C3 * (1 -
 Q2.$C4))), SUM(((Q2.$C3 * (1 - Q2.$C4)) * (1 + Q2.$C5))), COUNT(*
), SUM(Q2.$C4)
 FROM
 (SELECT Q1.L_RETURNFLAG, Q1.L_LINESTATUS, Q1.L_QUANTITY,
 Q1.L_EXTENDEDPRICE, Q1.L_DISCOUNT, Q1.L_TAX
 FROM ORA.LINEITEM AS Q1
 WHERE (Q1.L_SHIPDATE <= '09/02/1998')) AS Q2
 GROUP BY Q2.$C1, Q2.$C0) AS Q3
ORDER BY Q3.$C0, Q3.$C1

Access Plan:

Total Cost: 8.22466e+06
Query Degree:1

 Rows
 RETURN
 (1)
 Cost

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 459

 I/O
 |
 6
 SHIP
 (2)
 8.22466e+06
 2.08104e+06
 |
 5.99861e+07
 NICKNM: ORA
 LINEITEM

1) RETURN: (Return Result)
Cumulative Total Cost: 8.22466e+06
Cumulative CPU Cost: 1.74852e+11
Cumulative I/O Cost: 2.08104e+06
Cumulative Re-Total Cost: 8.1887e+06
Cumulative Re-CPU Cost: 9.87231e+10
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 8.22466e+06
Estimated Bufferpool Buffers: 0
Remote communication cost:11.8594

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

2) From Operator #2

Estimated number of rows: 6
Number of columns: 12
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_RETURNFLAG(A)+Q3.L_LINESTATUS(A)
+Q4.COUNT_ORDER+Q4.AVG_DISC+Q4.AVG_PRICE
+Q4.AVG_QTY+Q4.SUM_CHARGE+Q4.SUM_DISC_PRICE
+Q4.SUM_BASE_PRICE+Q4.SUM_QTY+Q4.L_LINESTATUS

460 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q4.L_RETURNFLAG

2) SHIP : (Ship)
Cumulative Total Cost: 8.22466e+06
Cumulative CPU Cost: 1.74852e+11
Cumulative I/O Cost: 2.08104e+06
Cumulative Re-Total Cost: 8.1887e+06
Cumulative Re-CPU Cost: 9.87231e+10
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 8.22466e+06
Estimated Bufferpool Buffers: 0
Remote communication cost:11.8594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."L_RETURNFLAG", A0."L_LINESTATUS", SUM(A0."L_QUANTITY"),
SUM(A0."L_EXTENDEDPRICE"), SUM((A0."L_EXTENDEDPRICE" * (1 -
(A0."L_DISCOUNT")))), SUM(((A0."L_EXTENDEDPRICE" * (1 - (A0."L_DISCOUNT"))) *
(1 + A0."L_TAX"))), (SUM(A0."L_QUANTITY") / COUNT(*)), (SUM(
A0."L_EXTENDEDPRICE") / COUNT(*)), (SUM(A0."L_DISCOUNT") / COUNT(*)), COUNT(*)
FROM "IITEST"."LINEITEM" A0 WHERE (A0."L_SHIPDATE" <= TO_DATE('19980902
000000','YYYYMMDD HH24MISS')) GROUP BY A0."L_RETURNFLAG", A0."L_LINESTATUS"
ORDER BY 1 ASC, 2 ASC

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
TRUE

Input Streams:

1) From Object ORA.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.L_TAX+Q1.L_DISCOUNT
+Q1.L_EXTENDEDPRICE+Q1.L_QUANTITY
+Q1.L_LINESTATUS+Q1.L_RETURNFLAG+Q1.L_SHIPDATE

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 461

Output Streams:

2) To Operator #1

Estimated number of rows: 6
Number of columns: 12
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_RETURNFLAG(A)+Q3.L_LINESTATUS(A)
+Q4.COUNT_ORDER+Q4.AVG_DISC+Q4.AVG_PRICE
+Q4.AVG_QTY+Q4.SUM_CHARGE+Q4.SUM_DISC_PRICE
+Q4.SUM_BASE_PRICE+Q4.SUM_QTY+Q4.L_LINESTATUS
+Q4.L_RETURNFLAG

Objects Used in Access Plan:

Schema: ORA
Name: LINEITEM
Type: Nickname

Time of creation: 2004-06-11-21.33.10.537308
Last statistics update: 2004-06-11-22.32.45.978864
Number of columns: 16
Number of rows: 59986052
Width of rows: 64
Number of buffer pool pages: 2081039
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Federated test environment
We used the same federated test environment as described in 4.4.1, “Federated
test environment” on page 167, for generating and analyzing db2exfmt output for
a number of federated queries.

462 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

db2exfmt examples involving DB2 II
In the following sections, we explain a number of federated queries using various
combinations of DB2 database manager configuration, DB2 II server and
nickname options, and format the explain output using db2exfmt. A brief review
and analysis of the access plan in the db2exfmt output is provided for the
following federated queries:

� Join of nicknames referencing Oracle and SQL Server
� INTRA_PARALLEL = YES (intra-partition enabled)
� Database Partition Feature (DPF) with FENCED = N
� Database Partition Feature (DPF) with FENCED = Y
� DB2_MAXIMAL_PUSHDOWN = N
� DB2_MAXIMAL_PUSHDOWN = Y
� SQL INSERT/UPDATE/DELETE

Depending on the complexity of the SQL statement, the db2exfmt output can be
quite voluminous. For a performance perspective, the main focus areas and
corresponding EXPLAIN indicator/operator of interest in the output are listed in
Table B-4. The sequence of focus areas listed in Table B-4 does not necessarily
imply any particular priority for problem analysis. Table B-5 on page 464 lists the
main DB2 II server options.

Table B-4 db2exfmt output focus areas

Note: We had multiple instances on Jamesbay that we used for our db2exfmt
examples. A 32-bit instance with local non-DPF data was used for SQL server
access, while a 64-bit instance with local DPF data was used in the fenced
and trusted wrapper examples.

Focus area Explain indicator/operator Tuning controls

DB2 II catalog currency --
nickname statistics and
index specifications

Default “1000” rows SYSPROC.NNSTAT
CREATE INDEX

Pushdown SHIP, RMTQTXT, FILTER,
GRPBY

Server options
PUSHDOWN,
DB2_MAXIMAL_PUS
HDOWN,
CPU_RATIO,
IO_RATIO,
COMM_RATE,

Join method HSJOIN, MSJOIN, NLJOIN Buffer pool, sort heap

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 463

Table B-5 DB2 II server options

Intra-partition parallelism LTQ, LMTQ DFT_DEGREE

Inter-partition parallelism DTQ, BTQ, MDTQ CPG, Wrapper Type

Focus area Explain indicator/operator Tuning controls

Option Description Default

COMM_RATE Specifies the
communication rate
between the federated
server and the data source
server. Expressed in
megabytes per second.

2

CPU_RATIO Indicates how much faster
or slower a data source
CPU runs than the
federated server.

‘1.0’

DB2_MAXIMAL_PUSHDOWN Specifies the primary
criteria that the query
optimizer uses when
choosing an access plan.

‘N’

IO_RATIO Denotes how much faster
or slower a data source I/O
system runs than the
federated server I/O
system.

‘1.0’

LOGIN_TIMEOUT Specifies the number of
seconds for the DB2
federated server to wait for
a response from Sybase
Open Client to the login
request.

‘0’

PACKET_SIZE Specifies the packet size of
the Sybase interfaces file
in bytes.

PLAN_HINTS Specifies whether plan
hints are to be enabled.
Plan hints are statement
fragments that provide
extra information for data
source optimizers.

‘N’

464 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

PUSHDOWN ’Y’ - DB2 UDB will consider
letting the data source
evaluate operations.
’N’ - DB2 UDB will send the
data source SQL
statements that include
only SELECT with column
names. Predicates (such
as WHERE=) column and
scalar functions (such as
MAX and MIN), sorts (such
as ORDER BY or GROUP
BY), and joins will not be
included in any SQL sent
to the data source.

‘Y’

TIMEOUT Specifies the number of
seconds the DB2
federated server will wait
for a response from
Sybase Open Client for
any SQL statement. The
value of seconds is a
positive whole number in
DB2 UDB’s integer range.
The timeout value that you
specify depends on which
wrapper you are using.
The default behavior of the
TIMEOUT option for the
Sybase wrappers is 0,
which causes DB2 UDB to
wait indefinitely for a
response. BioRS:
Specifies the time, in
minutes, that the BioRS
wrapper should wait for a
response from the BioRS
server. The default value is
10.

‘0’

Option Description Default

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 465

VARCHAR_NO_TRAILING_BLANKS This option applies to data
sources that have variable
character data types that
do not pad the length with
trailing blanks during
comparison.

Some data sources, such
as Oracle, do not have
blank-padded character
comparison semantics that
return the same results as
the DB2 for Linux, UNIX,
and Windows comparison
semantics. Set this option
when you want it to apply
to all the VARCHAR and
VARCHAR2 columns in
the data source objects
that will be accessed from
the designated server. This
includes views.
Y - Trailing blanks are
absent from these
VARCHAR columns, or the
data source has
blank-padded character
comparison semantics that
are similar to the
semantics on the federated
server. The federated
server pushes down
character comparison
operations to the data
source for processing.
N Trailing blanks are
present in these
VARCHAR columns and
the data source has
blank-padded character
comparison semantics that
are different than the
federated server.

N for affected data
sources.

Option Description Default

466 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Each of the focus areas identified in Table B-4 on page 463 are covered briefly:

� DB2 II catalog currency

The DB2 optimizer relies on accurate statistics about nickname objects (table
and related indexes) in order to generate an optimal access plan.

For nicknames, table statistics, and index definitions are captured when the
nickname is created. After the initial capture, any changes occurring at the
remote table are not automatically reflected at the federated data source.
Invoking the stored procedure NNSTAT or the Statistics Update facility against
the nickname results in updating of the statistics at the federated server;
however, the stored procedure does not synchronize the nickname’s index
specifications between the federated server and the remote data source.

At nickname creation, if the remote table did not have statistics collected, then
DB2 II uses a default cardinality of 1000 rows.

� Pushdown

For relational data sources in general, it is generally more efficient to push
down the processing of a query or query fragment to the remote data source.
The SHIP operator in the db2exfmt access plan graph identifies the
processing that occurs at the remote data source.

The decision to push down a predicate to the remote source depends upon
many considerations such as overall cost, server options, column options,
and pushdownability of predicates due to federated server and remote data
source differences, as discussed in “Pushdown” on page 78.

When certain predicates are not pushed down, operators such as FILTER
and GRPBY appear above the SHIP operator in the access plan graph
indicating that such processing is occurring at the federated server. The
absence of complete pushdown should trigger further investigation as to the
causes, and may require tuning the DB2 II server options such as
PUSHDOWN, CPU_RATIO, IO_RATIO, COMM_RATE, and
DB2_MAXIMAL_PUSHDOWN, or nickname options to achieve the desired
pushdown.

� Join method

DB2 supports three join methods: Nested loop, merge scan, and hash join.
When a federated query joins tables at different data sources, one or more of
these join methods is invoked to execute the federated query at the federated
server.

In some cases, a join may be executed at the federated server even when the
nicknames involved refer to tables at the same remote data source. Such
occurrences need to be investigated for possible cause and possible
resolution to achieve optimal performance.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 467

Depending upon the number of rows involved in the join, and the number and
types of predicates involved, a different join method than the one chosen may
be appropriate for optimal performance. A thorough understanding of the
circumstances that favor a particular join method for superior performance is
required to determine whether the join method chosen by the DB2 optimizer
needs to be reviewed for relevance. If not, appropriate tuning techniques need
to be adopted to so that the DB2 optimizer makes the correct join method
decision.

� Intra-partition parallelism (INTRA_PARALLEL = NO)

Intra-partition involves dividing a query into multiple concurrent parts that run
in parallel by multiple processes on a single database partition. It is enabled
when the database manager configuration parameter INTRA_PARALLEL is
set to YES, and the degree of parallelism is defined by the DFT_DEGREE
database configuration parameter (this can be overridden by the SET
CURRENT DEGREE SQL statement).

When the federated query accesses both nickname and local data, and
intra-partition parallelism is enabled, access to the local data can occur in
parallel while nicknames only run serially. This can allow queries to run faster
in an SMP environment.

The Local Table Queue2 (LTQ) operator in the db2exfmt access plan graph
indicates the use of intra-partition parallelism. The Local Merging Table
Queue (LMTQ) operator indicates a type of LTQ that merges sorted data from
multiple agents.

� Inter-partition parallelism

Inter-partition parallelism involved dividing a single query into multiple parts
that run in parallel on different partitions of a partitioned database. It requires
the database partition feature (DPF) to be installed.

In queries that reference local and/or remote data sources, DB2 II can
distribute nickname data to the partitions for parallel processing. There are no
requirements on setting any instance or database configuration parameters to
enable inter-partition parallelism; however, only parts of a query that
reference fenced wrappers can run in parallel.

The Directed Table Queue (DTQ) and Broadcast Table Queue (BTQ) operator
in the db2exfmt access path graph indicate the use of inter-partition
parallelism. A DTQ sends data to specific partitions based on partition keys or
predicates. A BTQ broadcasts rows to several partitions defined by target or
destination partitioning. Merging table queues (MDTQ, MBTQ) try to preserve
the order of the stream of rows at the receiving side by merging the locally
ordered rows from the sending side. A computational partition group (CPG)
defines a set of partitions, other than IBMCATNODEGROUP, that can be used

2 A table queue is a mechanism to communicate data between db2 agents.

468 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

to run the nickname parts of a join query in parallel. This can possibly make
the query run faster if the amount of nickname data that participates in the
join is large.

The following applies to the server options identified in Table B-5 on page 464:

� COMM_RATE

The default is 2, and the value is in mega-bytes/second.

� CPU_RATIO

A value less than one (that is, 0.00001) means that the data source has more
CPU capacity than the federated server.

� IO_RATIO

A value less than one (that is, 0.00001) means that the data source has a
faster disk I/O rate than the federated server.

� VARCHAR_NO_TRAILING_BLANKS

This option affects performance with Oracle data sources. With
VARCHAR_NO_TRAILING_BLANKS = 'N' (default), for VARCHAR and
VARCHAR2 columns in joins and filters, DB2 II sends RPAD(colname)= to
Oracle, and Oracle cannot use an index to process this join or filter, possibly
causing poor performance. The option can be set either for an entire server
definition, or as a column on option on an individual column of a nickname.

Join of nicknames referencing Oracle and SQL server
We used the 32-bit instance for this example. Our objective was to review the
access plan in a db2exfmt output for a federated query that joined nicknames at
two different data sources and no local data access.

Our SQL query ranks customers based on the their placement of large quantity
orders. Large quantity orders are defined as those orders whose total quantity is
above 300 in our case. The customer table resides on the SQL server, while the
orders and line item table reside on Oracle.

Example B-8 shows the complete db2exfmt output for our SQL query. The SQL
statement we issued has been highlighted under “Original statement” in this
output.

Example: B-8 db2exfmt output - Join of nicknames

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 469

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-24-08.52.14.146220
EXPLAIN_REQUESTER: DB2I32

Database Context:

Parallelism: None
CPU Speed: 4.841528e-07
Comm Speed: 100
Buffer Pool size: 1000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE,
 SUM(L_QUANTITY)
FROM MSS.CUSTOMER, ORA.ORDERS, ORA.LINEITEM
WHERE O_ORDERKEY IN
 (SELECT L_ORDERKEY
 FROM ORA.LINEITEM
 GROUP BY L_ORDERKEY

470 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 HAVING SUM(L_QUANTITY) > 300) AND.C_CUSTKEY = O_CUSTKEY AND.O_ORDERKEY =
 L_ORDERKEY
GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE
ORDER BY O_TOTALPRICE DESC, O_ORDERDATE
FETCH FIRST 100 ROWS ONLY

Optimized Statement:

SELECT Q9.$C0 AS "C_NAME", Q9.$C1 AS "C_CUSTKEY", Q9.$C2 AS "O_ORDERKEY",
 Q9.$C3 AS "O_ORDERDATE", Q9.$C4 AS "O_TOTALPRICE", Q9.$C5
FROM
 (SELECT Q8.$C0, Q8.$C1, Q8.$C2, Q8.$C3, Q8.$C4, SUM(Q8.$C5)
 FROM
 (SELECT Q7.C_NAME, Q7.C_CUSTKEY, Q6.O_ORDERKEY, Q6.O_ORDERDATE,
 Q6.O_TOTALPRICE, Q5.L_QUANTITY
 FROM ORA.LINEITEM AS Q5, ORA.ORDERS AS Q6, MSS.CUSTOMER AS Q7
 WHERE (Q6.O_ORDERKEY = Q5.L_ORDERKEY) AND (Q7.C_CUSTKEY = Q6.O_CUSTKEY)
 AND Q6.O_ORDERKEY = ANY
 (SELECT Q3.$C1
 FROM
 (SELECT SUM(Q2.$C1), Q2.$C0
 FROM
 (SELECT Q1.L_ORDERKEY, Q1.L_QUANTITY
 FROM ORA.LINEITEM AS Q1) AS Q2
 GROUP BY Q2.$C0) AS Q3
 WHERE (300 < Q3.$C0))) AS Q8
 GROUP BY Q8.$C4, Q8.$C3, Q8.$C2, Q8.$C1, Q8.$C0) AS Q9
ORDER BY Q9.$C4 DESC, Q9.$C3

Access Plan:

Total Cost: 1.24987e+12
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 100
 GRPBY
 (2)
 1.24987e+12
 2.94129e+11
 |
 2.9993e+07
 TBSCAN

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 471

 (3)
 1.24987e+12
 2.94129e+11
 |
 2.9993e+07
 SORT
 (4)
 1.24986e+12
 2.94128e+11
 |
 2.9993e+07
 MSJOIN
 (5)
 1.24984e+12
 2.94127e+11
 /----+----\
 1.5e+06 19.9953
 TBSCAN FILTER
 (6) (10)
 583190 1.24984e+12
 65026 2.94127e+11
 | |
 1.5e+06 2.9993e+07
 SORT TBSCAN
 (7) (11)
 521190 1.24984e+12
 49719 2.94127e+11
 | |
 1.5e+06 2.9993e+07
 SHIP SORT
 (8) (12)
 135200 1.24984e+12
 34412 2.94127e+11
 | |
 1.5e+06 2.9993e+07
 NICKNM: MSS SHIP
 CUSTOMER (13)
 1.24983e+12
 2.94126e+11
 /------+-----\
 1.5e+07 5.99861e+07
 NICKNM: ORA NICKNM: ORA
 ORDERS LINEITEM

1) RETURN: (Return Result)
Cumulative Total Cost: 1.24987e+12

472 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative CPU Cost: 2.04573e+17
Cumulative I/O Cost: 2.94129e+11
Cumulative Re-Total Cost: 3.78209e+06
Cumulative Re-CPU Cost: 1.1724e+11
Cumulative Re-I/O Cost: 952160
Cumulative First Row Cost: 1.24986e+12
Estimated Bufferpool Buffers: 952160
Remote communication cost:1.71231e+07

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

15) From Operator #2

Estimated number of rows: 100
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q10.O_TOTALPRICE(D)+Q10.O_ORDERDATE(A)
+Q10.C_CUSTKEY(A)+Q10.O_ORDERKEY(A)+Q10.$C5
+Q10.C_NAME

2) GRPBY : (Group By)
Cumulative Total Cost: 1.24987e+12
Cumulative CPU Cost: 2.04573e+17
Cumulative I/O Cost: 2.94129e+11
Cumulative Re-Total Cost: 3.77563e+06
Cumulative Re-CPU Cost: 1.03893e+11
Cumulative Re-I/O Cost: 952160
Cumulative First Row Cost: 1.24986e+12
Estimated Bufferpool Buffers: 952160
Remote communication cost:1.71231e+07

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 473

TRUE
GROUPBYN: (Number of Group By columns)

4
GROUPBYR: (Group By requirement)

1: Q8.C_CUSTKEY
GROUPBYR: (Group By requirement)

2: Q8.O_ORDERKEY
GROUPBYR: (Group By requirement)

3: Q8.O_ORDERDATE
GROUPBYR: (Group By requirement)

4: Q8.O_TOTALPRICE
GROUPBYR: (Group By requirement)

5: Q8.C_NAME
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

14) From Operator #3

Estimated number of rows: 2.9993e+07
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.O_TOTALPRICE(D)+Q8.O_ORDERDATE(A)
+Q8.C_CUSTKEY(A)+Q8.O_ORDERKEY(A)
+Q8.L_QUANTITY+Q8.C_NAME

Output Streams:

15) To Operator #1

Estimated number of rows: 100
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q10.O_TOTALPRICE(D)+Q10.O_ORDERDATE(A)
+Q10.C_CUSTKEY(A)+Q10.O_ORDERKEY(A)+Q10.$C5
+Q10.C_NAME

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 1.24987e+12
Cumulative CPU Cost: 2.04573e+17

474 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative I/O Cost: 2.94129e+11
Cumulative Re-Total Cost: 3.772e+06
Cumulative Re-CPU Cost: 9.63947e+10
Cumulative Re-I/O Cost: 952160
Cumulative First Row Cost: 1.24986e+12
Estimated Bufferpool Buffers: 952160
Remote communication cost:1.71231e+07

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

13) From Operator #4

Estimated number of rows: 2.9993e+07
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.O_TOTALPRICE(D)+Q8.O_ORDERDATE(A)
+Q8.C_CUSTKEY(A)+Q8.O_ORDERKEY(A)
+Q8.L_QUANTITY+Q8.C_NAME

Output Streams:

14) To Operator #2

Estimated number of rows: 2.9993e+07
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.O_TOTALPRICE(D)+Q8.O_ORDERDATE(A)
+Q8.C_CUSTKEY(A)+Q8.O_ORDERKEY(A)
+Q8.L_QUANTITY+Q8.C_NAME

4) SORT : (Sort)
Cumulative Total Cost: 1.24986e+12

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 475

Cumulative CPU Cost: 2.04573e+17
Cumulative I/O Cost: 2.94128e+11
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 952160
Cumulative First Row Cost: 1.24986e+12
Estimated Bufferpool Buffers: 1.23768e+06
Remote communication cost:1.71231e+07

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

29993024
ROWWIDTH: (Estimated width of rows)

60
SORTKEY : (Sort Key column)

1: Q8.O_TOTALPRICE(D)
SORTKEY : (Sort Key column)

2: Q8.O_ORDERDATE(A)
SORTKEY : (Sort Key column)

3: Q8.C_CUSTKEY(A)
SORTKEY : (Sort Key column)

4: Q8.O_ORDERKEY(A)
SPILLED : (Pages spilled to bufferpool or disk)

952160
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

12) From Operator #5

Estimated number of rows: 2.9993e+07
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.L_QUANTITY+Q8.O_TOTALPRICE+Q8.O_ORDERDATE
+Q8.O_ORDERKEY+Q8.C_CUSTKEY+Q8.C_NAME

Output Streams:

13) To Operator #3

476 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 2.9993e+07
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.O_TOTALPRICE(D)+Q8.O_ORDERDATE(A)
+Q8.C_CUSTKEY(A)+Q8.O_ORDERKEY(A)
+Q8.L_QUANTITY+Q8.C_NAME

5) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 1.24984e+12
Cumulative CPU Cost: 2.04572e+17
Cumulative I/O Cost: 2.94127e+11
Cumulative Re-Total Cost: 1.24984e+12
Cumulative Re-CPU Cost: 2.04572e+17
Cumulative Re-I/O Cost: 2.94127e+11
Cumulative First Row Cost: 1.24984e+12
Estimated Bufferpool Buffers: 285515
Remote communication cost:1.71231e+07

Arguments:

EARLYOUT: (Early Out flag)

NONE
INNERCOL: (Inner Order Columns)

1: Q6.O_CUSTKEY(A)
OUTERCOL: (Outer Order columns)

1: Q7.C_CUSTKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

8) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 6.66667e-07

Predicate Text:

(Q7.C_CUSTKEY = Q6.O_CUSTKEY)

Input Streams:

4) From Operator #6

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 477

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.C_CUSTKEY(A)+Q7.C_NAME

11) From Operator #10

Estimated number of rows: 19.9953
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.O_CUSTKEY(A)+Q5.L_QUANTITY+Q6.O_TOTALPRICE
+Q6.O_ORDERDATE+Q6.O_ORDERKEY

Output Streams:

12) To Operator #4

Estimated number of rows: 2.9993e+07
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.L_QUANTITY+Q8.O_TOTALPRICE+Q8.O_ORDERDATE
+Q8.O_ORDERKEY+Q8.C_CUSTKEY+Q8.C_NAME

6) TBSCAN: (Table Scan)
Cumulative Total Cost: 583190
Cumulative CPU Cost: 1.23151e+10
Cumulative I/O Cost: 65026
Cumulative Re-Total Cost: 61999.6
Cumulative Re-CPU Cost: 4.32908e+09
Cumulative Re-I/O Cost: 15307
Cumulative First Row Cost: 523276
Estimated Bufferpool Buffers: 15307
Remote communication cost:824343

Arguments:

JN INPUT: (Join input leg)

478 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

3) From Operator #7

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.C_CUSTKEY(A)+Q7.C_NAME

Output Streams:

4) To Operator #5

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.C_CUSTKEY(A)+Q7.C_NAME

7) SORT : (Sort)
Cumulative Total Cost: 521190
Cumulative CPU Cost: 7.98603e+09
Cumulative I/O Cost: 49719
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 15307
Cumulative First Row Cost: 521190
Estimated Bufferpool Buffers: 49719
Remote communication cost:824343

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 479

NUMROWS : (Estimated number of rows)
1500000

ROWWIDTH: (Estimated width of rows)
36

SORTKEY : (Sort Key column)
1: Q7.C_CUSTKEY(A)

SPILLED : (Pages spilled to bufferpool or disk)
15307

TEMPSIZE: (Temporary Table Page Size)
4096

UNIQUE : (Uniqueness required flag)
FALSE

Input Streams:

2) From Operator #8

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.C_NAME+Q7.C_CUSTKEY

Output Streams:

3) To Operator #6

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.C_CUSTKEY(A)+Q7.C_NAME

8) SHIP : (Ship)
Cumulative Total Cost: 135200
Cumulative CPU Cost: 1.1371e+09
Cumulative I/O Cost: 34412
Cumulative Re-Total Cost: 135200
Cumulative Re-CPU Cost: 1.1371e+09
Cumulative Re-I/O Cost: 34412
Cumulative First Row Cost: 25.0071
Estimated Bufferpool Buffers: 34412
Remote communication cost:824343

480 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."C_CUSTKEY", A0."C_NAME" FROM "TPCD"."CUSTOMER" A0
SRCSEVER: (Source (ship from) server)

SQLSERV
STREAM : (Remote stream)

FALSE

Input Streams:

1) From Object MSS.CUSTOMER

Estimated number of rows: 1.5e+06
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q7.RID+Q7.C_NAME+Q7.C_CUSTKEY

Output Streams:

2) To Operator #7

Estimated number of rows: 1.5e+06
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.C_NAME+Q7.C_CUSTKEY

10) FILTER: (Filter)
Cumulative Total Cost: 1.24984e+12
Cumulative CPU Cost: 2.04572e+17
Cumulative I/O Cost: 2.94127e+11
Cumulative Re-Total Cost: 1.10107e+06
Cumulative Re-CPU Cost: 9.06373e+10
Cumulative Re-I/O Cost: 270208
Cumulative First Row Cost: 1.24984e+12
Estimated Bufferpool Buffers: 270208

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 481

Remote communication cost:1.62988e+07

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

8) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 6.66667e-07

Predicate Text:

(Q7.C_CUSTKEY = Q6.O_CUSTKEY)

Input Streams:

10) From Operator #11

Estimated number of rows: 2.9993e+07
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.O_CUSTKEY(A)+Q5.L_QUANTITY+Q6.O_TOTALPRICE
+Q6.O_ORDERDATE+Q6.O_ORDERKEY

Output Streams:

11) To Operator #5

Estimated number of rows: 19.9953
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.O_CUSTKEY(A)+Q5.L_QUANTITY+Q6.O_TOTALPRICE
+Q6.O_ORDERDATE+Q6.O_ORDERKEY

11) TBSCAN: (Table Scan)
Cumulative Total Cost: 1.24984e+12

482 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative CPU Cost: 2.04572e+17
Cumulative I/O Cost: 2.94127e+11
Cumulative Re-Total Cost: 1.10107e+06
Cumulative Re-CPU Cost: 9.06373e+10
Cumulative Re-I/O Cost: 270208
Cumulative First Row Cost: 1.24984e+12
Estimated Bufferpool Buffers: 270208
Remote communication cost:1.62988e+07

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

9) From Operator #12

Estimated number of rows: 2.9993e+07
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.O_CUSTKEY(A)+Q5.L_QUANTITY+Q6.O_TOTALPRICE
+Q6.O_ORDERDATE+Q6.O_ORDERKEY

Output Streams:

10) To Operator #10

Estimated number of rows: 2.9993e+07
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.O_CUSTKEY(A)+Q5.L_QUANTITY+Q6.O_TOTALPRICE
+Q6.O_ORDERDATE+Q6.O_ORDERKEY

12) SORT : (Sort)
Cumulative Total Cost: 1.24984e+12
Cumulative CPU Cost: 2.04572e+17

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 483

Cumulative I/O Cost: 2.94127e+11
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 270208
Cumulative First Row Cost: 1.24984e+12
Estimated Bufferpool Buffers: 1.48701e+06
Remote communication cost:1.62988e+07

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

29993026
ROWWIDTH: (Estimated width of rows)

32
SORTKEY : (Sort Key column)

1: Q6.O_CUSTKEY(A)
SPILLED : (Pages spilled to bufferpool or disk)

270208
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

8) From Operator #13

Estimated number of rows: 2.9993e+07
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q5.L_QUANTITY+Q6.O_TOTALPRICE+Q6.O_ORDERDATE
+Q6.O_CUSTKEY+Q6.O_ORDERKEY

Output Streams:

9) To Operator #11

Estimated number of rows: 2.9993e+07
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

484 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q6.O_CUSTKEY(A)+Q5.L_QUANTITY+Q6.O_TOTALPRICE
+Q6.O_ORDERDATE+Q6.O_ORDERKEY

13) SHIP : (Ship)
Cumulative Total Cost: 1.24983e+12
Cumulative CPU Cost: 2.04572e+17
Cumulative I/O Cost: 2.94126e+11
Cumulative Re-Total Cost: 1.24983e+12
Cumulative Re-CPU Cost: 2.04572e+17
Cumulative Re-I/O Cost: 2.94126e+11
Cumulative First Row Cost: 3.72551e+07
Estimated Bufferpool Buffers: 1.2168e+06
Remote communication cost:1.62988e+07

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A1."O_ORDERKEY", A1."O_CUSTKEY", A1."O_ORDERDATE",
A1."O_TOTALPRICE", A0."L_QUANTITY" FROM "IITEST"."LINEITEM" A0,
"IITEST"."ORDERS" A1 WHERE (A1."O_ORDERKEY"= ANY (SELECT A2."L_ORDERKEY" FROM
"IITEST"."LINEITEM" A2 GROUP BY A2."L_ORDERKEY" HAVING (300 < SUM(
A2."L_QUANTITY")))) AND (A1."O_ORDERKEY" = A0."L_ORDERKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

5) From Object ORA.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q5.RID+Q5.L_QUANTITY+Q5.L_ORDERKEY

6) From Object ORA.ORDERS

Estimated number of rows: 1.5e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 485

Column Names:

+Q6.O_TOTALPRICE+Q6.O_CUSTKEY

7) From Object ORA.LINEITEM

Estimated number of rows: 5.99861e+07
Number of columns: 3
Subquery predicate ID: 9

Column Names:

+Q1.RID+Q1.L_QUANTITY+Q1.L_ORDERKEY

Output Streams:

8) To Operator #12

Estimated number of rows: 2.9993e+07
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q5.L_QUANTITY+Q6.O_TOTALPRICE+Q6.O_ORDERDATE
+Q6.O_CUSTKEY+Q6.O_ORDERKEY

Objects Used in Access Plan:

Schema: MSS
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-06-10-22.24.53.208724
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 43
Number of buffer pool pages: 34412
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

486 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Schema: ORA
Name: LINEITEM
Type: Nickname

Time of creation: 2004-06-10-08.38.39.249747
Last statistics update: 2004-06-10-19.56.51.065544
Number of columns: 16
Number of rows: 59986052
Width of rows: 41
Number of buffer pool pages: 2081039
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: ORDERS
Type: Nickname

Time of creation: 2004-06-10-08.38.39.158115
Last statistics update: 2004-06-10-19.56.50.452787
Number of columns: 9
Number of rows: 15000000
Width of rows: 49
Number of buffer pool pages: 443840
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Access plan description
The access plan graph for our SQL query has been highlighted in Example B-8
on page 469 under “Access Plan”.

Reading this graph bottom up reveals the following:

� The bottom left part of the graph indicates that the CUSTOMER nickname
has 1.5 million rows according to the DB2 II catalog statistics, and that all
these rows are processed by the SHIP operator (8). However, only three
columns (see the Input Streams for the SHIP operator 8) were retrieved,
including the RID, C_CNAME, and C_CUSTKEY.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 487

� The rows from the SHIP operator are input to the SORT operator (7) with two
columns (C_NAME and C_CUSTKEY) being passed (see the Output
Streams for the SHIP operator 8, which corresponds to the Input Streams for
the SORT operator 7). These rows are sorted ascending on the C_CUSTKEY
column (see Arguments in the SORT operator 7) and stored in a temporary
table.

� The sorted rows are then scanned via a table scan (TBSCAN operator 6) and
used as the outer table, as indicated by OUTERCOL in the Arguments of the
merge scan join (MSJOIN operator 5). The inner table of this merge scan join
is estimated to have 19.9953 rows, and the result of the merge scan join is
estimated to be 2.9993e+07 rows.

� The 19.9953 rows for the inner table of the join are formed from a series of
executions involving a SHIP (operator 13), SORT (operator 12), TBSCAN
(operator 11), and FILTER (operator 10).

– The SHIP operator 13 estimates 2.9993e+07 rows (5 columns) are
retrieved from the Oracle data source—the RMTQTXT field in Arguments
for the SHIP operator 8 contains the text of the SQL statement sent to the
Oracle data source as being a join of nicknames ORDERS (1.5e+07
cardinality according to the DB2 II catalog) and LINEITEM (5.99861e+07
cardinality according to the DB2 II catalog).

– The SORT operator 12 sorts the rows in O-CUSTKEY ascending order
and writes them to a temporary table.

– The TBSCAN operator 11 retrieves the sorted rows in the temporary table
and passes them to the FILTER operator 10.

– The FILTER operator 10 applies the residual predicate (Q7.C_CUSTKEY
= Q6.O_CUSTKEY), estimating that 19.9953 rows will qualify.

� The estimated 2.9993e+07 rows (6 columns) result of the merge scan join
(MSJOIN operator 5) is input to SORT operator 4, which sorts on four
columns (descending O_TOTALPRICE, ascending O_ORDERDATE,
ascending C_CUSTKEY, ascending O_ORDERKEY) and written to a
temporary table.

� The TBSCAN operator 3 scans this temporary table and passes all the
2.9993e+07 rows to the GRPBY operator 2.

� The GRPBY operator 2 groups on five columns and estimates that 100 rows
will be returned to the user via the RETURN operator 1.

� The total cost is estimated to be 1.24987e+12 timerons, and there is no
parallelism involved (Query Degree:1 and no table queue operators in the
Access Plan).

488 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Analysis

The following observations apply to the db2exfmt output shown in Example B-8
on page 469.

� There is only one SHIP operator to the Oracle data source, and it references
two nicknames (ORA.ORDERS and ORA.LINEITEM). This indicates that the
join of the ORDERS and LINEITEM nicknames is being pushed down to
Oracle, which tends to be a positive indicator.

� The cardinality of the nicknames appear to be valid since the DB2 optimizer
default of 1000 rows does not appear. This, however, does not guarantee that
the DB2 II catalog reflects the actual number of rows at the remote data
source.

� There are a few sorts involved (operators 4, 7 and 12) with a large numbers of
rows involved. The Database Context shows the Sort Heap size to be 256
pages, while the Buffer Pool size is 1000. This causes spillover to buffer pool
and disk (temporary table space), which can impact performance. SORT
operator 7 estimates a need for 49719 buffers, while SORT operator 12
estimates a need for 14,870,100 buffers. While this indicates a potential
performance improvement to be gained by tuning the sort heap and number
of buffers, it appears that a significant portion of the total estimated cost of the
query (1.24987e+12) comes from the SHIP operator to Oracle that is
expected to return about 29,000,000 rows.

Our analysis points to satisfactory pushdown of predicates, and possible tuning
of the sort heap and number of buffers after actual runtime metrics are gathered
for this query.

INTRA_PARALLEL = YES (intra-partition enabled)
We used the 32-bit instance for this example. Our objective was to review the
access plan in a db2exfmt output for a federated query that joined nickname data
at a remote data source with local non-DPF data in an SMP environment with the
database manager configuration option INTRA_PARALLEL = YES (intra-partition
parallelism enabled).

Important: Bearing in mind that the EXPLAIN output information is DB2
optimizer estimates only and does not necessarily reflect actual runtime
metrics, you should be cautious in drawing conclusions about relative costs
associated with each operator, as well as relying on the number of estimated
rows retrieved or returned by the various operators. EXPLAIN output
information is best used in conjunction with runtime metrics gathered through
monitoring.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 489

We used the same query that was used in “Join of nicknames referencing Oracle
and SQL server” on page 469, with the difference being that the orders and line
item table now reside on local DB2 UDB non-DPF tables using schema name
TPCD, while the customer table continues to reside on the SQL server.

Example B-9 shows the complete db2exfmt output for our SQL query. The SQL
statement we issued has been highlighted under “Original statement” in this
output.

Example: B-9 db2exfmt output for intra-partition parallelism enabled

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-24-17.35.31.278653
EXPLAIN_REQUESTER: DB2I32

Database Context:

Parallelism: Intra-Partition Parallelism
CPU Speed: 4.841528e-07
Comm Speed: 100
Buffer Pool size: 1000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------

490 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: -1

Original Statement:

SELECT C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE,
 SUM(L_QUANTITY)
FROM mss.CUSTOMER, TPCD.ORDERS, TPCD.LINEITEM
WHERE O_ORDERKEY IN
 (SELECT L_ORDERKEY
 FROM TPCD.LINEITEM
 GROUP BY L_ORDERKEY
 HAVING SUM(L_QUANTITY) > 300) AND.C_CUSTKEY = O_CUSTKEY AND.O_ORDERKEY =
 L_ORDERKEY
GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE
ORDER BY O_TOTALPRICE DESC, O_ORDERDATE
FETCH FIRST 100 ROWS ONLY

Optimized Statement:

SELECT Q7.$C5 AS "C_NAME", Q7.$C4 AS "C_CUSTKEY", Q7.$C3 AS "O_ORDERKEY",
 Q7.$C2 AS "O_ORDERDATE", Q7.$C1 AS "O_TOTALPRICE", Q7.$C0
FROM
 (SELECT SUM(Q6.$C5), Q6.$C0, Q6.$C1, Q6.$C2, Q6.$C3, Q6.$C4
 FROM
 (SELECT Q4.O_TOTALPRICE, Q4.O_ORDERDATE, Q4.O_ORDERKEY, Q5.C_CUSTKEY,
 Q5.C_NAME, Q3.$C0
 FROM
 (SELECT SUM(Q2.$C1), Q2.$C0
 FROM
 (SELECT Q1.L_ORDERKEY, Q1.L_QUANTITY
 FROM TPCD.LINEITEM AS Q1) AS Q2
 GROUP BY Q2.$C0) AS Q3, TPCD.ORDERS AS Q4, MSS.CUSTOMER AS Q5
 WHERE (Q3.$C1 = Q4.O_ORDERKEY) AND (+3.00000000000000E+002 < Q3.$C0)
 AND (Q5.C_CUSTKEY = Q4.O_CUSTKEY)) AS Q6
 GROUP BY Q6.$C4, Q6.$C3, Q6.$C2, Q6.$C1, Q6.$C0) AS Q7
ORDER BY Q7.$C1 DESC, Q7.$C2

Access Plan:

Total Cost: 1.30554e+07
Query Degree:8

 Rows

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 491

 RETURN
 (1)
 Cost
 I/O
 |
 100
 GRPBY
 (2)
 1.30554e+07
 1.91732e+06
 |
 954.234
 NLJOIN
 (3)
 1.30554e+07
 1.91732e+06
 /-----+----\
 1272.23 0.750047
 LMTQ SHIP
 (4) (15)
 1.2946e+07 68.7753
 1.91295e+06 2.75005
 | |
 1272.23 1.5e+06
 TBSCAN NICKNM: MSS
 (5) CUSTOMER
 1.2946e+07
 1.91295e+06
 |
 1272.23
 SORT
 (6)
 1.2946e+07
 1.91295e+06
 |
 1272.23
 NLJOIN
 (7)
 1.2946e+07
 1.91295e+06
 /-------+-------\
 1272.23 1
 FILTER FETCH
 (8) (13)
 1.27556e+07 100.034
 1.90533e+06 4
 | /---+---\
 3e+07 1 3e+07
 GRPBY IXSCAN TABLE: TPCD

492 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 (9) (14) ORDERS
 1.27426e+07 75.0263
 1.90533e+06 3
 | |
 3e+07 3e+07
 TBSCAN INDEX: TPCD
 (10) O_OK_OD_OP
 1.2739e+07
 1.90533e+06
 |
 3e+07
 SORT
 (11)
 1.17875e+07
 1.67277e+06
 |
 1.1997e+08
 IXSCAN
 (12)
 5.75522e+06
 1.44021e+06
 |
 1.1997e+08
 INDEX: TPCD
 L_PKSKOKEPDSQN

1) RETURN: (Return Result)
Cumulative Total Cost: 1.30554e+07
Cumulative CPU Cost: 8.19229e+11
Cumulative I/O Cost: 1.91732e+06
Cumulative Re-Total Cost: 1.07132e+06
Cumulative Re-CPU Cost: 1.20207e+11
Cumulative Re-I/O Cost: 1590.1
Cumulative First Row Cost: 1.29461e+07
Estimated Bufferpool Buffers: 3498.7
Remote communication cost:6881.96

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 493

Input Streams:

18) From Operator #2

Estimated number of rows: 100
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.O_TOTALPRICE(D)+Q8.O_ORDERDATE(A)
+Q8.O_ORDERKEY(A)+Q8.$C5+Q8.C_CUSTKEY+Q8.C_NAME

2) GRPBY : (Group By)
Cumulative Total Cost: 1.30554e+07
Cumulative CPU Cost: 8.19229e+11
Cumulative I/O Cost: 1.91732e+06
Cumulative Re-Total Cost: 1.07132e+06
Cumulative Re-CPU Cost: 1.20206e+11
Cumulative Re-I/O Cost: 1590.1
Cumulative First Row Cost: 1.29461e+07
Estimated Bufferpool Buffers: 3498.7
Remote communication cost:6881.96

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

TRUE
GROUPBYN: (Number of Group By columns)

1
GROUPBYR: (Group By requirement)

1: Q6.O_ORDERKEY
GROUPBYR: (Group By requirement)

2: Q6.O_ORDERDATE
GROUPBYR: (Group By requirement)

3: Q6.O_TOTALPRICE
GROUPBYR: (Group By requirement)

4: Q6.C_CUSTKEY
GROUPBYR: (Group By requirement)

5: Q6.C_NAME
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

17) From Operator #3

494 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 954.234
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q6.O_TOTALPRICE(D)+Q6.O_ORDERDATE(A)
+Q6.O_ORDERKEY(A)+Q6.$C5+Q6.C_NAME+Q6.C_CUSTKEY

Output Streams:

18) To Operator #1

Estimated number of rows: 100
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q8.O_TOTALPRICE(D)+Q8.O_ORDERDATE(A)
+Q8.O_ORDERKEY(A)+Q8.$C5+Q8.C_CUSTKEY+Q8.C_NAME

3) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 1.30554e+07
Cumulative CPU Cost: 8.19229e+11
Cumulative I/O Cost: 1.91732e+06
Cumulative Re-Total Cost: 1.07132e+06
Cumulative Re-CPU Cost: 1.20206e+11
Cumulative Re-I/O Cost: 1590.1
Cumulative First Row Cost: 1.29461e+07
Estimated Bufferpool Buffers: 3498.7
Remote communication cost:6881.96

Arguments:

EARLYOUT: (Early Out flag)

LEFT
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

9) Predicate used in Join

Relational Operator: Equal (=)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 495

Subquery Input Required: No
Filter Factor: 5.00031e-07

Predicate Text:

(Q5.C_CUSTKEY = Q4.O_CUSTKEY)

Input Streams:

14) From Operator #4

Estimated number of rows: 1272.23
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_TOTALPRICE(D)+Q4.O_ORDERDATE(A)
+Q4.O_ORDERKEY(A)+Q3.$C0+Q4.O_CUSTKEY

16) From Operator #15

Estimated number of rows: 0.750047
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q5.C_NAME+Q5.C_CUSTKEY

Output Streams:

17) To Operator #2

Estimated number of rows: 954.234
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q6.O_TOTALPRICE(D)+Q6.O_ORDERDATE(A)
+Q6.O_ORDERKEY(A)+Q6.$C5+Q6.C_NAME+Q6.C_CUSTKEY

4) TQ : (Table Queue)
Cumulative Total Cost: 1.2946e+07
Cumulative CPU Cost: 8.19176e+11

496 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative I/O Cost: 1.91295e+06
Cumulative Re-Total Cost: 1.03154e+06
Cumulative Re-CPU Cost: 1.20163e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.2946e+07
Estimated Bufferpool Buffers: 0

Arguments:

JN INPUT: (Join input leg)

OUTER
LISTENER: (Listener Table Queue type)

FALSE
SORTKEY : (Sort Key column)

1: Q4.O_TOTALPRICE(D)
SORTKEY : (Sort Key column)

2: Q4.O_ORDERDATE(A)
SORTKEY : (Sort Key column)

3: Q4.O_ORDERKEY(A)
TQ TYPE : (Table queue type)

LOCAL
TQDEGREE: (Degree of Intra-Partition parallelism)

8
TQMERGE : (Merging Table Queue flag)

TRUE
TQREAD : (Table Queue Read type)

READ AHEAD
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

13) From Operator #5

Estimated number of rows: 1272.23
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_TOTALPRICE(D)+Q4.O_ORDERDATE(A)
+Q4.O_ORDERKEY(A)+Q3.$C0+Q4.O_CUSTKEY

Output Streams:

14) To Operator #3

Estimated number of rows: 1272.23

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 497

Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_TOTALPRICE(D)+Q4.O_ORDERDATE(A)
+Q4.O_ORDERKEY(A)+Q3.$C0+Q4.O_CUSTKEY

5) TBSCAN: (Table Scan)
Cumulative Total Cost: 1.2946e+07
Cumulative CPU Cost: 8.19174e+11
Cumulative I/O Cost: 1.91295e+06
Cumulative Re-Total Cost: 1.03154e+06
Cumulative Re-CPU Cost: 1.20163e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.2946e+07
Estimated Bufferpool Buffers: 0

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

12) From Operator #6

Estimated number of rows: 1272.23
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_TOTALPRICE(D)+Q4.O_ORDERDATE(A)
+Q4.O_ORDERKEY(A)+Q3.$C0+Q4.O_CUSTKEY

Output Streams:

13) To Operator #4

Estimated number of rows: 1272.23
Number of columns: 5
Subquery predicate ID: Not Applicable

498 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q4.O_TOTALPRICE(D)+Q4.O_ORDERDATE(A)
+Q4.O_ORDERKEY(A)+Q3.$C0+Q4.O_CUSTKEY

6) SORT : (Sort)
Cumulative Total Cost: 1.2946e+07
Cumulative CPU Cost: 8.19172e+11
Cumulative I/O Cost: 1.91295e+06
Cumulative Re-Total Cost: 1.03154e+06
Cumulative Re-CPU Cost: 1.20161e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 1.2946e+07
Estimated Bufferpool Buffers: 237648

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

1273
ROWWIDTH: (Estimated width of rows)

32
SORTKEY : (Sort Key column)

1: Q4.O_TOTALPRICE(D)
SORTKEY : (Sort Key column)

2: Q4.O_ORDERDATE(A)
SORTKEY : (Sort Key column)

3: Q4.O_ORDERKEY(A)
SORTTYPE: (Intra-Partition parallelism sort type)

ROUND ROBIN
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

11) From Operator #7

Estimated number of rows: 1272.23
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_ORDERKEY(A)+Q3.$C0+Q4.O_ORDERDATE

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 499

+Q4.O_TOTALPRICE+Q4.O_ORDERKEY+Q4.O_CUSTKEY

Output Streams:

12) To Operator #5

Estimated number of rows: 1272.23
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_TOTALPRICE(D)+Q4.O_ORDERDATE(A)
+Q4.O_ORDERKEY(A)+Q3.$C0+Q4.O_CUSTKEY

7) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 1.2946e+07
Cumulative CPU Cost: 8.19168e+11
Cumulative I/O Cost: 1.91295e+06
Cumulative Re-Total Cost: 1.03154e+06
Cumulative Re-CPU Cost: 1.20161e+11
Cumulative Re-I/O Cost: 235098
Cumulative First Row Cost: 1.18291e+07
Estimated Bufferpool Buffers: 237648

Arguments:

EARLYOUT: (Early Out flag)

LEFT
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

7) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 3.33333e-08

Predicate Text:

(Q3.$C1 = Q4.O_ORDERKEY)

Input Streams:

500 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

6) From Operator #8

Estimated number of rows: 1272.23
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_ORDERKEY(A)+Q3.$C0

10) From Operator #13

Estimated number of rows: 1
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_ORDERKEY(A)+Q4.O_ORDERDATE(A)
+Q4.O_TOTALPRICE+Q4.O_CUSTKEY

Output Streams:

11) To Operator #6

Estimated number of rows: 1272.23
Number of columns: 6
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_ORDERKEY(A)+Q3.$C0+Q4.O_ORDERDATE
+Q4.O_TOTALPRICE+Q4.O_ORDERKEY+Q4.O_CUSTKEY

8) FILTER: (Filter)
Cumulative Total Cost: 1.27556e+07
Cumulative CPU Cost: 8.19096e+11
Cumulative I/O Cost: 1.90533e+06
Cumulative Re-Total Cost: 968040
Cumulative Re-CPU Cost: 1.20106e+11
Cumulative Re-I/O Cost: 232559
Cumulative First Row Cost: 1.1829e+07
Estimated Bufferpool Buffers: 232559

Arguments:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 501

JN INPUT: (Join input leg)
OUTER

Predicates:

8) Residual Predicate

Relational Operator: Less Than (<)
Subquery Input Required: No
Filter Factor: 4.24078e-05

Predicate Text:

(+3.00000000000000E+002 < Q3.$C0)

Input Streams:

5) From Operator #9

Estimated number of rows: 3e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_ORDERKEY(A)+Q3.$C0

Output Streams:

6) To Operator #7

Estimated number of rows: 1272.23
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_ORDERKEY(A)+Q3.$C0

9) GRPBY : (Group By)
Cumulative Total Cost: 1.27426e+07
Cumulative CPU Cost: 7.92396e+11
Cumulative I/O Cost: 1.90533e+06
Cumulative Re-Total Cost: 955113
Cumulative Re-CPU Cost: 9.34061e+10
Cumulative Re-I/O Cost: 232559
Cumulative First Row Cost: 1.18286e+07

502 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated Bufferpool Buffers: 232559

Arguments:

AGGMODE : (Aggregration Mode)

FINAL
GROUPBYC: (Group By columns)

TRUE
GROUPBYN: (Number of Group By columns)

1
GROUPBYR: (Group By requirement)

1: Q2.L_ORDERKEY
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

4) From Operator #10

Estimated number of rows: 3e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.L_ORDERKEY(A)+Q2.L_QUANTITY

Output Streams:

5) To Operator #8

Estimated number of rows: 3e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.L_ORDERKEY(A)+Q3.$C0

10) TBSCAN: (Table Scan)
Cumulative Total Cost: 1.2739e+07
Cumulative CPU Cost: 7.84896e+11
Cumulative I/O Cost: 1.90533e+06
Cumulative Re-Total Cost: 951482
Cumulative Re-CPU Cost: 8.59061e+10
Cumulative Re-I/O Cost: 232559
Cumulative First Row Cost: 1.18286e+07

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 503

Estimated Bufferpool Buffers: 232559

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

3) From Operator #11

Estimated number of rows: 3e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.L_ORDERKEY(A)+Q2.L_QUANTITY

Output Streams:

4) To Operator #9

Estimated number of rows: 3e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.L_ORDERKEY(A)+Q2.L_QUANTITY

11) SORT : (Sort)
Cumulative Total Cost: 1.17875e+07
Cumulative CPU Cost: 6.98989e+11
Cumulative I/O Cost: 1.67277e+06
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 232559
Cumulative First Row Cost: 1.17875e+07
Estimated Bufferpool Buffers: 1.67277e+06

Arguments:

504 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

AGGMODE : (Aggregration Mode)
PARTIAL

DUPLWARN: (Duplicates Warning flag)
FALSE

NUMROWS : (Estimated number of rows)
30000000

PARTCOLS: (Table partitioning columns)
1: Q2.L_ORDERKEY

ROWWIDTH: (Estimated width of rows)
25

SORTKEY : (Sort Key column)
1: Q2.L_ORDERKEY(A)

SORTTYPE: (Intra-Partition parallelism sort type)
PARTITIONED

SPILLED : (Pages spilled to bufferpool or disk)
232559

TEMPSIZE: (Temporary Table Page Size)
4096

UNIQUE : (Uniqueness required flag)
FALSE

Input Streams:

2) From Operator #12

Estimated number of rows: 1.1997e+08
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.L_QUANTITY+Q2.L_ORDERKEY

Output Streams:

3) To Operator #10

Estimated number of rows: 3e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.L_ORDERKEY(A)+Q2.L_QUANTITY

12) IXSCAN: (Index Scan)
Cumulative Total Cost: 5.75522e+06

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 505

Cumulative CPU Cost: 2.48044e+11
Cumulative I/O Cost: 1.44021e+06
Cumulative Re-Total Cost: 5.63989e+06
Cumulative Re-CPU Cost: 1.01213e+10
Cumulative Re-I/O Cost: 1.44021e+06
Cumulative First Row Cost: 100.028
Estimated Bufferpool Buffers: 1.44022e+06

Arguments:

MAXPAGES: (Maximum pages for prefetch)

1411407
PREFETCH: (Type of Prefetch)

SEQUENTIAL
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
SCANGRAN: (Intra-Partition Parallelism Scan Granularity)

400
SCANTYPE: (Intra-Partition Parallelism Scan Type)

LOCAL PARALLEL
SCANUNIT: (Intra-Partition Parallelism Scan Unit)

ROW
TABLOCK : (Table Lock intent)

INTENT SHARE

Input Streams:

1) From Object TPCD.L_PKSKOKEPDSQN

Estimated number of rows: 1.1997e+08
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.L_QUANTITY+Q1.L_ORDERKEY

Output Streams:

2) To Operator #11

Estimated number of rows: 1.1997e+08
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

506 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q2.L_QUANTITY+Q2.L_ORDERKEY

13) FETCH : (Fetch)
Cumulative Total Cost: 100.034
Cumulative CPU Cost: 70885.6
Cumulative I/O Cost: 4
Cumulative Re-Total Cost: 50.0211
Cumulative Re-CPU Cost: 43580.6
Cumulative Re-I/O Cost: 2
Cumulative First Row Cost: 100.033
Estimated Bufferpool Buffers: 1.13613e+06

Arguments:

JN INPUT: (Join input leg)

INNER
MAXPAGES: (Maximum pages for prefetch)

1
MAXPAGES: (Maximum pages for prefetch)

1
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
TABLOCK : (Table Lock intent)

INTENT SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY

Input Streams:

8) From Operator #14

Estimated number of rows: 1
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_ORDERKEY(A)+Q4.O_ORDERDATE(A)

9) From Object TPCD.ORDERS

Estimated number of rows: 3e+07
Number of columns: 2
Subquery predicate ID: Not Applicable

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 507

Column Names:

+Q4.O_TOTALPRICE+Q4.O_CUSTKEY

Output Streams:

10) To Operator #7

Estimated number of rows: 1
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_ORDERKEY(A)+Q4.O_ORDERDATE(A)
+Q4.O_TOTALPRICE+Q4.O_CUSTKEY

14) IXSCAN: (Index Scan)
Cumulative Total Cost: 75.0263
Cumulative CPU Cost: 54368.6
Cumulative I/O Cost: 3
Cumulative Re-Total Cost: 25.0131
Cumulative Re-CPU Cost: 27063.7
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 75.0263
Estimated Bufferpool Buffers: 247938

Arguments:

MAXPAGES: (Maximum pages for prefetch)

1
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT SHARE

Predicates:

7) Start Key Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 3.33333e-08

508 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Predicate Text:

(Q3.$C1 = Q4.O_ORDERKEY)

7) Stop Key Predicate
Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 3.33333e-08

Predicate Text:

(Q3.$C1 = Q4.O_ORDERKEY)

Input Streams:

7) From Object TPCD.O_OK_OD_OP

Estimated number of rows: 3e+07
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_ORDERKEY(A)+Q4.O_ORDERDATE(A)+Q4.RID

Output Streams:

8) To Operator #13

Estimated number of rows: 1
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q4.O_ORDERKEY(A)+Q4.O_ORDERDATE(A)

15) SHIP : (Ship)
Cumulative Total Cost: 68.7753
Cumulative CPU Cost: 49825.4
Cumulative I/O Cost: 2.75005
Cumulative Re-Total Cost: 43.7684
Cumulative Re-CPU Cost: 35520.4
Cumulative Re-I/O Cost: 1.75005
Cumulative First Row Cost: 68.7745
Estimated Bufferpool Buffers: 37191

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 509

Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT A0."C_CUSTKEY", A0."C_NAME" FROM "TPCD"."CUSTOMER" A0 WHERE
(A0."C_CUSTKEY" = :H0)

SRCSEVER: (Source (ship from) server)
SQLSERV

STREAM : (Remote stream)
FALSE

Input Streams:

15) From Object MSS.CUSTOMER

Estimated number of rows: 1.5e+06
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.C_NAME

Output Streams:

16) To Operator #3

Estimated number of rows: 0.750047
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q5.C_NAME+Q5.C_CUSTKEY

Objects Used in Access Plan:

Schema: TPCD
Name: LINEITEM

510 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Type: Table (reference only)

Schema: TPCD
Name: L_PKSKOKEPDSQN
Type: Index

Time of creation: 2004-06-09-04.46.46.326250
Last statistics update: 2004-06-13-00.38.53.142096
Number of columns: 6
Number of rows: 119969523
Width of rows: -1
Number of buffer pool pages: 4164234
Distinct row values: No
Tablespace name: INDEX_TS
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 96
Container extent page count: 32
Index clustering statistic: 0.000003
Index leaf pages: 1411407
Index tree levels: 5
Index full key cardinality: 119969523
Index first key cardinality: 4000000
Index first 2 keys cardinality: 15871205
Index first 3 keys cardinality: 119969517
Index first 4 keys cardinality: 119969523
Index sequential pages: 1411404
Index page density: 98
Index avg sequential pages: 705702
Index avg gap between sequences:11
Index avg random pages: 0
Fetch avg sequential pages: -1
Fetch avg gap between sequences:-1
Fetch avg random pages: -1
Index RID count: 119969523
Index deleted RID count: 0
Index empty leaf pages: 0
Base Table Schema: TPCD
Base Table Name: LINEITEM
Columns in index:

L_PARTKEY
L_SUPPKEY
L_ORDERKEY
L_EXTENDEDPRICE
L_DISCOUNT
L_QUANTITY

Schema: TPCD
Name: O_OK_OD_OP

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 511

Type: Index
Time of creation: 2004-06-09-04.46.45.691853
Last statistics update: 2004-06-13-00.52.30.843995
Number of columns: 3
Number of rows: 30000000
Width of rows: -1
Number of buffer pool pages: 888190
Distinct row values: Yes
Tablespace name: INDEX_TS
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 96
Container extent page count: 32
Index clustering statistic: 1.000000
Index leaf pages: 247935
Index tree levels: 4
Index full key cardinality: 30000000
Index first key cardinality: 30000000
Index first 2 keys cardinality: 30000000
Index first 3 keys cardinality: 30000000
Index first 4 keys cardinality: -1
Index sequential pages: 247934
Index page density: 99
Index avg sequential pages: 247934
Index avg gap between sequences:0
Index avg random pages: 0
Fetch avg sequential pages: -1
Fetch avg gap between sequences:-1
Fetch avg random pages: -1
Index RID count: 30000000
Index deleted RID count: 0
Index empty leaf pages: 0
Base Table Schema: TPCD
Base Table Name: ORDERS
Columns in index:

O_ORDERKEY
O_ORDERDATE
O_ORDERPRIORITY

Schema: MSS
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-06-10-22.24.53.208724
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 43
Number of buffer pool pages: 34412

512 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: TPCD
Name: ORDERS
Type: Table

Time of creation: 2004-06-09-04.46.45.050919
Last statistics update: 2004-06-13-00.52.30.843995
Number of columns: 9
Number of rows: 30000000
Width of rows: 32
Number of buffer pool pages: 888190
Distinct row values: No
Tablespace name: DATA_TS
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 96
Container extent page count: 32
Table overflow record count: 0
Table Active Blocks: -1

Base Table For Index Not Already Shown:

Schema: TPCD
Name: LINEITEM

Time of creation: 2004-06-09-04.46.45.763452
Last statistics update: 2004-06-13-00.38.53.142096
Number of columns: 16
Number of rows: 119969523
Number of pages: 4164234
Number of pages with rows: 4164233
Tablespace name: DATA_TS
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Prefetch page count: 96
Container extent page count: 32
Table overflow record count: 0
Indexspace name: INDEX_TS

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 513

Access plan description
The access plan graph for our SQL query has been highlighted in Example B-9
on page 490 under “Access Plan”.

Reading this graph bottom up reveals the following:

� The bottom left part of the graph indicates that the L_PKSKOKEPDSQN
index on the LINEITEM table is scanned by the IXSCAN operator 12 and
returns 1.1997e+08 rows that includes two columns, L_QUANTITY and
L_ORDERKEY (see Output Streams for IXSCAN operator 12), to the SORT
operator 11.

� The 1.1997e+08 rows from the IXSCAN operator 12 operator are input to the
SORT operator 11 with two columns (L_QUANTITY and L_ORDERKEY),
which are aggregated and sorted in ascending order on L_ORDERKEY (see
Arguments in the SORT operator 11) and stored in a temporary table.

� The 3e+07 sorted rows in the temporary table are then scanned (TBSCAN
operator 10) and passed to the GRPBY operator 9.

� The GRPBY operator 9 aggregates these rows on the L_ORDERKEY column
and passes it on to the FILTER operator 8.

� The FILTER operator 8 applies a residual predicate of L_QUANTITY > 300
and passes the 1272.23 rows as the outer table of a nested loop join (NLJOIN
operator 7). The inner table of this merge scan join is estimated to have 1 row
(see FETCH operator 13), and the result of the nested loop join is estimated
to be 1272.23 rows.

� The 1 row of the inner table of the nested loop join is formed from a fetch
(FETCH operator 13) of an index scan (IXSCAN operator 14) of
O_OK_OD_OP index, which returns one row. The predicate is an equality
predicate on O_ORDERKEY (see Predicates in IXSCAN operator 14). Four
columns are returned to the FETCH operator 13, two from the index
(O_ORDERKEY and O_ORDERDATE) and two from the table
(O_TOTALPRICE and O_CUSTKEY), as shown in the Input Streams for the
FETCH operator 13.

� The 1272.23 rows are passed to the sort (SORT operator 6), which sorts the
data in descending O_TOTALPRICE, ascending O_ORDERDATE, and
ascending O_ORDERKEY order, and writes the results to a temporary table.

� The rows in the temporary table are scanned (TBSCAN operator 5) and
passed as the outer table of a nested loop join (NLJOIN operator 3).

� The listener merge table queue (LMTQ operator 4) indicates that SMP
intra-parallelism with a degree of 8 (see TQDEGREE field in Arguments for
this operator). Each of these 8 processes performed the set of operations 12,
11, 10, 9, 8, 14, 13, 7, 6, and 5 in parallel, and the final result of 1272.23 rows

514 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

was obtained by merging the results from the 8 parallel processes by the
LMTQ operator 4.

� The inner table of the nested loop join (NLJOIN operator 3) is formed by the
SHIP operator 15, which retrieves 0.750047 rows from the CUSTOMER table
in the SQL server with a cardinality of 1.5e+06. The RMTQTXT field in the
SHIP operator 15 shows the equality predicate on C_CUSTKEY being
applied at the remote source. Since it is a unique key, a maximum of one row
is returned.

� The 954.234 rows estimated to be output of the nested loop join is passed to
the GRPBY operator 2, which groups the rows on five columns
(O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE, C_CUSTKEY, and
C_NAME). The GRPBY operator 2 estimates that 100 rows will be the result
that it passes on to the RETURN operator 1.

� The total cost is estimated to be 1.30554e+07 timerons, and intra-parallelism
is used with a degree of eight (Query Degree:8 and an LMTQ table operator
in the Access Plan).

� Note that the Parallelism field in the Database Context identifies that
intra-partition parallelism is enabled for this environment.

Analysis

The following observations apply to the db2exfmt output shown in Example B-9
on page 490:

� There is only one SHIP operator to the SQL Server data source and it
references the MSS.CUSTOMER nickname. The equality predicate is applied
as part of the nested loop join at the remote data source.

� The cardinality of the nicknames appear to be valid since the DB2 optimizer
default of 1000 rows does not appear. This, however, does not guarantee that
the DB2 II catalog reflects the actual number of rows at the remote data
source.

� There are a few sorts involved (operators 6, and 11) with large numbers of
rows involved. The Database Context shows the Sort Heap size to be 256
pages, while the Buffer Pool size is 1000. This causes spillover to buffer pool

Important: Bearing in mind that the EXPLAIN output information is DB2
optimizer estimates only and does not necessarily reflect actual runtime
metrics, you should be cautious in drawing conclusions about relative costs
associated with each operator, as well as relying on the number of estimated
rows retrieved or returned by the various operators. EXPLAIN output
information is best used in conjunction with runtime metrics gathered through
monitoring.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 515

and disk (temporary table space), which can impact performance. SORT
operator 6 estimates a need for 237648 buffers, while SORT operator 11
estimates a need for 1.67277e+06 buffers. While this indicates a potential
performance improvement to be gained by tuning the sort heap and number
of buffers, it appears that a significant portion of the total estimated cost of the
query (1.30554e+07) comes from scanning the LINEITEM index, sorting,
grouping, and filtering 3e+07 rows for an estimated cost of 1.27556e+07
timerons.

� Note that the LINEITEM table is not directly accessed since all the necessary
information is obtained from the index.

Our analysis points to satisfactory exploitation of SMP parallelism, and the need
for possible tuning of the sort heap and number of buffers after actual runtime
metrics are gathered for this query.

Database Partition Feature (DPF) with FENCED = ‘N’
Our objective was to review the access plan in a db2exfmt output for a federated
query that joined nickname data at a remote data source with local data in a DPF
environment with the FENCED = ‘N’ wrapper option (default, and also known as
“trusted” wrapper), and with the FENCED = ‘Y’ option.

In this scenario, we used the default FENCED = ‘N’ wrapper option.

We used the 64 bit instance for this example. We set the database manager
configuration option INTRA_PARALLEL = NO (intra-partition parallelism
disabled).

We used a simple query that joined the customer and order table to obtain a
complete list of all orders by customer. In this scenario, the orders table resides
locally on a DB2 table, while the customer table resides on Oracle.

Example B-10 shows the complete db2exfmt output for our SQL query. The SQL
statement we issued has been highlighted under “Original statement” in this
output.

Example: B-10 db2exfmt output for trusted wrapper

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

516 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-23-09.16.49.241800
EXPLAIN_REQUESTER: DB2I64P

Database Context:

Parallelism: Inter-Partition Parallelism
CPU Speed: 5.313873e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select *
from tpcd.orders o, ora.customer c
where o.o_custkey = c.c_custkey

Optimized Statement:

SELECT Q3.$C7 AS "O_ORDERKEY", Q3.$C8 AS "O_CUSTKEY", Q3.$C6 AS
 "O_ORDERSTATUS", Q3.$C5 AS "O_TOTALPRICE", Q3.$C4 AS "O_ORDERDATE",
 Q3.$C3 AS "O_ORDERPRIORITY", Q3.$C2 AS "O_CLERK", Q3.$C1 AS

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 517

 "O_SHIPPRIORITY", Q3.$C0 AS "O_COMMENT", Q1.C_CUSTKEY AS "C_CUSTKEY",
 Q1.C_NAME AS "C_NAME", Q1.C_ADDRESS AS "C_ADDRESS", Q1.C_NATIONKEY AS
 "C_NATIONKEY", Q1.C_PHONE AS "C_PHONE", Q1.C_ACCTBAL AS "C_ACCTBAL",
 Q1.C_MKTSEGMENT AS "C_MKTSEGMENT", Q1.C_COMMENT AS "C_COMMENT"
FROM ORA.CUSTOMER AS Q1,
 (SELECT Q2.O_COMMENT, Q2.O_SHIPPRIORITY, Q2.O_CLERK, Q2.O_ORDERPRIORITY,
 Q2.O_ORDERDATE, Q2.O_TOTALPRICE, Q2.O_ORDERSTATUS, Q2.O_ORDERKEY,
 Q2.O_CUSTKEY
 FROM TPCD.ORDERS AS Q2) AS Q3
WHERE (Q3.$C8 = Q1.C_CUSTKEY)

Access Plan:

Total Cost: 3.4124e+07
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 2.27853e+07
 MSJOIN
 (2)
 3.4124e+07
 5.62735e+06
 /----+----\
 1.5e+06 15.1902
 SHIP FILTER
 (3) (6)
 200146 3.39164e+07
 35041 5.59231e+06
 | |
 1.5e+06 3.00114e+07
 NICKNM: ORA TBSCAN
 CUSTOMER (7)
 3.39164e+07
 5.59231e+06
 |
 3.00114e+07
 SORT
 (8)
 2.83444e+07
 2.94425e+06
 |
 3.00114e+07
 DTQ
 (9)

518 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 638128
 296184
 |
 1.00038e+07
 TBSCAN
 (10)
 628410
 296184
 |
 1.00038e+07
 TABLE: TPCD
 ORDERS

1) RETURN: (Return Result)
Cumulative Total Cost: 3.4124e+07
Cumulative CPU Cost: 4.51893e+11
Cumulative I/O Cost: 5.62735e+06
Cumulative Re-Total Cost: 3.4124e+07
Cumulative Re-CPU Cost: 4.51893e+11
Cumulative Re-I/O Cost: 5.62735e+06
Cumulative First Row Cost: 2.8378e+07
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:2.41827e+06
Estimated Bufferpool Buffers: 2.68311e+06
Remote communication cost:1.18291e+06

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
STMTHEAP: (Statement heap size)

4096

Input Streams:

9) From Operator #2

Estimated number of rows: 2.27853e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 519

+Q4.C_COMMENT+Q4.C_MKTSEGMENT+Q4.C_ACCTBAL
+Q4.C_PHONE+Q4.C_NATIONKEY+Q4.C_ADDRESS
+Q4.C_NAME+Q4.C_CUSTKEY+Q4.O_COMMENT
+Q4.O_SHIPPRIORITY+Q4.O_CLERK
+Q4.O_ORDERPRIORITY+Q4.O_ORDERDATE
+Q4.O_TOTALPRICE+Q4.O_ORDERSTATUS+Q4.O_CUSTKEY
+Q4.O_ORDERKEY

Partition Column Names:

+NONE

2) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 3.4124e+07
Cumulative CPU Cost: 4.51893e+11
Cumulative I/O Cost: 5.62735e+06
Cumulative Re-Total Cost: 3.4124e+07
Cumulative Re-CPU Cost: 4.51893e+11
Cumulative Re-I/O Cost: 5.62735e+06
Cumulative First Row Cost: 2.8378e+07
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:2.41827e+06
Estimated Bufferpool Buffers: 2.68311e+06
Remote communication cost:1.18291e+06

Arguments:

EARLYOUT: (Early Out flag)

NONE
INNERCOL: (Inner Order Columns)

1: Q3.O_CUSTKEY(A)
OUTERCOL: (Outer Order columns)

1: Q1.C_CUSTKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

2) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q3.$C8 = Q1.C_CUSTKEY)

520 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Input Streams:

2) From Operator #3

Estimated number of rows: 1.5e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_CUSTKEY(A)+Q1.C_COMMENT+Q1.C_MKTSEGMENT
+Q1.C_ACCTBAL+Q1.C_PHONE+Q1.C_NATIONKEY
+Q1.C_ADDRESS+Q1.C_NAME

Partition Column Names:

+NONE

8) From Operator #6

Estimated number of rows: 15.1902
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_CUSTKEY(A)+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_ORDERKEY

Partition Column Names:

+NONE

Output Streams:

9) To Operator #1

Estimated number of rows: 2.27853e+07
Partition Map ID: -100
Partitioning: (COOR)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 521

Coordinator Partition
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q4.C_COMMENT+Q4.C_MKTSEGMENT+Q4.C_ACCTBAL
+Q4.C_PHONE+Q4.C_NATIONKEY+Q4.C_ADDRESS
+Q4.C_NAME+Q4.C_CUSTKEY+Q4.O_COMMENT
+Q4.O_SHIPPRIORITY+Q4.O_CLERK
+Q4.O_ORDERPRIORITY+Q4.O_ORDERDATE
+Q4.O_TOTALPRICE+Q4.O_ORDERSTATUS+Q4.O_CUSTKEY
+Q4.O_ORDERKEY

Partition Column Names:

+NONE

3) SHIP : (Ship)
Cumulative Total Cost: 200146
Cumulative CPU Cost: 4.18261e+09
Cumulative I/O Cost: 35041
Cumulative Re-Total Cost: 2097.12
Cumulative Re-CPU Cost: 3.94651e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 75.0424
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 35042
Remote communication cost:1.18291e+06

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."C_CUSTKEY", A0."C_NAME", A0."C_ADDRESS", A0."C_NATIONKEY",
A0."C_PHONE", A0."C_ACCTBAL", A0."C_MKTSEGMENT", A0."C_COMMENT" FROM
"IITEST"."CUSTOMER" A0 ORDER BY 1 ASC

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

522 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Input Streams:

1) From Object ORA.CUSTOMER

Estimated number of rows: 1.5e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_MKTSEGMENT+Q1.C_ACCTBAL
+Q1.C_PHONE+Q1.C_NATIONKEY+Q1.C_ADDRESS
+Q1.C_NAME

Partition Column Names:

+NONE

Output Streams:

2) To Operator #2

Estimated number of rows: 1.5e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_CUSTKEY(A)+Q1.C_COMMENT+Q1.C_MKTSEGMENT
+Q1.C_ACCTBAL+Q1.C_PHONE+Q1.C_NATIONKEY
+Q1.C_ADDRESS+Q1.C_NAME

Partition Column Names:

+NONE

6) FILTER: (Filter)
Cumulative Total Cost: 3.39164e+07
Cumulative CPU Cost: 4.33688e+11
Cumulative I/O Cost: 5.59231e+06
Cumulative Re-Total Cost: 5.57199e+06

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 523

Cumulative Re-CPU Cost: 8.3105e+10
Cumulative Re-I/O Cost: 2.64806e+06
Cumulative First Row Cost: 2.83779e+07
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:2.41827e+06
Estimated Bufferpool Buffers: 2.64806e+06

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

2) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q3.$C8 = Q1.C_CUSTKEY)

Input Streams:

7) From Operator #7

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_CUSTKEY(A)+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_ORDERKEY

Partition Column Names:

+NONE

Output Streams:

524 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

8) To Operator #2

Estimated number of rows: 15.1902
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_CUSTKEY(A)+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_ORDERKEY

Partition Column Names:

+NONE

7) TBSCAN: (Table Scan)
Cumulative Total Cost: 3.39164e+07
Cumulative CPU Cost: 4.33688e+11
Cumulative I/O Cost: 5.59231e+06
Cumulative Re-Total Cost: 5.57199e+06
Cumulative Re-CPU Cost: 8.3105e+10
Cumulative Re-I/O Cost: 2.64806e+06
Cumulative First Row Cost: 2.83779e+07
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:2.41827e+06
Estimated Bufferpool Buffers: 2.64806e+06

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

6) From Operator #8

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 525

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_CUSTKEY(A)+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_ORDERKEY

Partition Column Names:

+NONE

Output Streams:

7) To Operator #6

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_CUSTKEY(A)+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_ORDERKEY

Partition Column Names:

+NONE

8) SORT : (Sort)
Cumulative Total Cost: 2.83444e+07
Cumulative CPU Cost: 3.50582e+11
Cumulative I/O Cost: 2.94425e+06
Cumulative Re-Total Cost: 0
Cumulative Re-CPU Cost: 0
Cumulative Re-I/O Cost: 2.64806e+06
Cumulative First Row Cost: 2.83444e+07
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:2.41827e+06

526 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated Bufferpool Buffers: 2.94425e+06

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

30011368
ROWWIDTH: (Estimated width of rows)

112
SORTKEY : (Sort Key column)

1: Q3.O_CUSTKEY(A)
SPILLED : (Pages spilled to bufferpool or disk)

2.64806e+06
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

5) From Operator #9

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+NONE

Output Streams:

6) To Operator #7

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 527

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_CUSTKEY(A)+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_ORDERKEY

Partition Column Names:

+NONE

9) TQ : (Table Queue)
Cumulative Total Cost: 638128
Cumulative CPU Cost: 3.73425e+10
Cumulative I/O Cost: 296184
Cumulative Re-Total Cost: 628410
Cumulative Re-CPU Cost: 1.90555e+10
Cumulative Re-I/O Cost: 296184
Cumulative First Row Cost: 10.4828
Cumulative Comm Cost:2.41827e+06
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 296184

Arguments:

LISTENER: (Listener Table Queue type)

FALSE
TQMERGE : (Merging Table Queue flag)

FALSE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

DIRECTED
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

4) From Operator #10

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions

528 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+1: Q3.O_ORDERKEY

Output Streams:

5) To Operator #8

Estimated number of rows: 3.00114e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+NONE

10) TBSCAN: (Table Scan)
Cumulative Total Cost: 628410
Cumulative CPU Cost: 1.90555e+10
Cumulative I/O Cost: 296184
Cumulative Re-Total Cost: 628410
Cumulative Re-CPU Cost: 1.90555e+10
Cumulative Re-I/O Cost: 296184
Cumulative First Row Cost: 10.4278
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 296184

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 529

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

SEQUENTIAL
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY

Input Streams:

3) From Object TPCD.ORDERS

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_CUSTKEY+Q2.O_ORDERKEY
+Q2.O_ORDERSTATUS+Q2.O_TOTALPRICE
+Q2.O_ORDERDATE+Q2.O_ORDERPRIORITY+Q2.O_CLERK
+Q2.O_SHIPPRIORITY+Q2.O_COMMENT

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

4) To Operator #9

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 9
Subquery predicate ID: Not Applicable

530 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q3.O_COMMENT+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS
+Q3.O_ORDERKEY+Q3.O_CUSTKEY

Partition Column Names:

+1: Q3.O_ORDERKEY

Objects Used in Access Plan:

Schema: ORA
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-06-10-08.32.16.950465
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 236
Number of buffer pool pages: 32173
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: TPCD
Name: ORDERS
Type: Table

Time of creation: 2004-06-04-07.02.15.736633
Last statistics update: 2004-06-09-23.20.10.138687
Number of columns: 9
Number of rows: 10003789
Width of rows: 115
Number of buffer pool pages: 296184
Distinct row values: No
Tablespace name: DATA_TS
Tablespace overhead: 9.500000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 48
Container extent page count: 16

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 531

Table overflow record count:

Access plan description
The access plan graph for our SQL query has been highlighted in Example B-10
on page 516 under “Access Plan”.

Reading this graph bottom up reveals the following:

� The bottom left part of the graph indicates that the ORA.CUSTOMER
nickname has 1.5 million rows according to the DB2 II catalog statistics, and
that all these rows are processed by the SHIP operator 3. Seven columns
(see the Input Streams for the SHIP operator 3) were retrieved.

� The 1.5e+06 rows from the SHIP operator 3 form the outer table (see the
Arguments section of this operator) of a merge scan join (MSJOIN operator
2). The inner table of this merge scan join is estimated to have 15.1902 rows,
and the result of the merge scan join is estimated to be 2.27853e+07 rows.

� The 15.1902 rows for the inner table of the join are formed from a series of
operator executions involving a TBSCAN (operator 10), DTQ (operator 9),
SORT (operator 8), TBSCAN (operator 7), SORT (operator 8), and FILTER
(operator 6).

– The directed table queue operator (DTQ operator 9) indicates that the
rows of the TPCD.ORDERS table are scanned in parallel in each partition
(cardinality of 1.00038e+07 rows), and 3.00114e+07 rows (which are the
sum of all rows from the three partitions where this table resides) are
directed to the coordinator partition (see Output Streams of the DTQ
operator 9) for sorting (SORT operator 8) and storing in a temporary table.

– The TBSCAN operator 7 then scans the temporary table and passes it to
the FILTER operator 6, which applies the residual predicate matching the
customer key as part of the merge scan join (MSJOIN operator 2).

� The estimated 2.27853e+07 rows from the merge scan result are passed to
the RETURN operator 1.

� The total cost is estimated to be 3.4124e+07 timerons, and intra-parallelism is
not used (Query Degree:1). However, inter-partition parallelism is used since
the DTQ operator appears in the access plan.

� Note that the Parallelism field in the Database Context identifies that
inter-partition parallelism is enabled for this environment.

532 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Analysis

The following observations apply to the db2exfmt output shown in Example B-10
on page 516.

� There is only one SHIP operator (3) to the Oracle data source, and it
references the ORA.CUSTOMER nickname. The RMTQTXT field in the
Arguments section of the SHIP operator 3 shows the ORDER BY being
pushed down, which indicates a matching collating sequence between the
federated server and the Oracle data source.

� The cardinality of the nicknames appear to be valid since the DB2 optimizer
default of 1000 rows does not appear. This, however, does not guarantee that
the DB2 II catalog reflects the actual number of rows at the remote data
source.

� There is one sort involved (operators 8) involving 30 million rows. The
Database Context shows the Sort Heap size to be 256 pages, while the Buffer
Pool size is 75000. This causes spillover to buffer pool and disk (temporary
table space), which can impact performance. SORT operator 8 estimates a
need for 2,944250 buffers. Since a significant portion of the estimated cost of
the query (3.4124e+07) appears to be related to the SORT operator 8, it
indicates that potential performance improvements can be gained by tuning
the sort heap and number of buffers.

� A key point is that DB2 II serially performs the join between the local orders
table and the customer nickname at the coordinator partition. This is because
of the use of the trusted wrapper, which inhibits DB2 II from distributing
nickname data across multiple partitions to create a parallel join.

Our analysis points to considering the use of other than a trusted wrapper (see
“Database Partition Feature (DPF) with FENCED = ‘Y’” on page 534) for greater

Important: Bearing in mind that the EXPLAIN output information is DB2
optimizer estimates only and does not necessarily reflect actual runtime
metrics, you should be cautious in drawing conclusions about relative costs
associated with each operator, as well as relying on the number of estimated
rows retrieved or returned by the various operators. EXPLAIN output
information is best used in conjunction with runtime metrics gathered through
monitoring.

Note: There is no indication of the wrapper type (trusted or not) in the
db2exfmt output.

The wrapper type is stored in DB2 system catalog table
SYSIBM.SYSWRAPOPTIONS or view SYSCAT.WRAPOPTIONS.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 533

parallelism, if appropriate, and the need for possible tuning of the sort heap and
number of buffers after actual runtime metrics are gathered for this query.

Database Partition Feature (DPF) with FENCED = ‘Y’
In this scenario, we ran the same query and environment used in “Database
Partition Feature (DPF) with FENCED = ‘N’” on page 516, with the only
difference being that the wrapper option was set to FENCED = ‘Y’.

Example B-11 shows the complete db2exfmt output for our SQL query. The SQL
statement we issued has been highlighted under “Original statement” in this
output.

Example: B-11 db2exfmt output for fenced wrapper

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-23-09.34.25.261504
EXPLAIN_REQUESTER: DB2I64P

Database Context:

Parallelism: Inter-Partition Parallelism
CPU Speed: 5.313873e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 640

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors

534 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select *
from tpcd.orders o, ora.customer c
where o.o_custkey = c.c_custkey

Optimized Statement:

SELECT Q2.O_ORDERKEY AS "O_ORDERKEY", Q2.O_CUSTKEY AS "O_CUSTKEY",
 Q2.O_ORDERSTATUS AS "O_ORDERSTATUS", Q2.O_TOTALPRICE AS
 "O_TOTALPRICE", Q2.O_ORDERDATE AS "O_ORDERDATE", Q2.O_ORDERPRIORITY
 AS "O_ORDERPRIORITY", Q2.O_CLERK AS "O_CLERK", Q2.O_SHIPPRIORITY AS
 "O_SHIPPRIORITY", Q2.O_COMMENT AS "O_COMMENT", Q1.C_CUSTKEY AS
 "C_CUSTKEY", Q1.C_NAME AS "C_NAME", Q1.C_ADDRESS AS "C_ADDRESS",
 Q1.C_NATIONKEY AS "C_NATIONKEY", Q1.C_PHONE AS "C_PHONE",
 Q1.C_ACCTBAL AS "C_ACCTBAL", Q1.C_MKTSEGMENT AS "C_MKTSEGMENT",
 Q1.C_COMMENT AS "C_COMMENT"
FROM ORA.CUSTOMER AS Q1, TPCD.ORDERS AS Q2
WHERE (Q2.O_CUSTKEY = Q1.C_CUSTKEY)

Access Plan:

Total Cost: 214094
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 2.27853e+07
 DTQ
 (2)
 214094
 32193.1

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 535

 |
 7.5951e+06
 NLJOIN
 (3)
 203003
 32193.1
 /------+------\
 1.5e+06 5.0634
 BTQ FETCH
 (4) (7)
 128671 53.8812
 32173 17.5276
 | /---+---\
 1.5e+06 5.0634 1.00038e+07
 SHIP RIDSCN TABLE: TPCD
 (5) (8) ORDERS
 127364 20.8488
 32173 2
 | |
 1.5e+06 5.0634
 NICKNM: ORA SORT
 CUSTOMER (9)
 20.8481
 2
 |
 5.0634
 IXSCAN
 (10)
 20.8465
 2
 |
 1.00038e+07
 INDEX: TPCD
 O_CK

1) RETURN: (Return Result)
Cumulative Total Cost: 214094
Cumulative CPU Cost: 1.6588e+11
Cumulative I/O Cost: 32193.1
Cumulative Re-Total Cost: 75642.7
Cumulative Re-CPU Cost: 1.42349e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 56.3935
Cumulative Comm Cost:6.18905e+06
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32191.1

536 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Remote communication cost:1.18291e+06

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
STMTHEAP: (Statement heap size)

4096

Input Streams:

11) From Operator #2

Estimated number of rows: 2.27853e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

+NONE

2) TQ : (Table Queue)
Cumulative Total Cost: 214094
Cumulative CPU Cost: 1.6588e+11
Cumulative I/O Cost: 32193.1
Cumulative Re-Total Cost: 75642.7
Cumulative Re-CPU Cost: 1.42349e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 56.3935
Cumulative Comm Cost:6.18905e+06
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32191.1
Remote communication cost:1.18291e+06

Arguments:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 537

LISTENER: (Listener Table Queue type)

FALSE
TQMERGE : (Merging Table Queue flag)

FALSE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

DIRECTED
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

10) From Operator #3

Estimated number of rows: 7.5951e+06
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

+1: Q3.O_ORDERKEY

Output Streams:

11) To Operator #1

Estimated number of rows: 2.27853e+07
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 17
Subquery predicate ID: Not Applicable

538 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

+NONE

3) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 203003
Cumulative CPU Cost: 1.45008e+11
Cumulative I/O Cost: 32193.1
Cumulative Re-Total Cost: 75642.7
Cumulative Re-CPU Cost: 1.42349e+11
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 56.3385
Cumulative Comm Cost:743805
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32191.1
Remote communication cost:1.18291e+06

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

2) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 539

Input Streams:

3) From Operator #4

Estimated number of rows: 1.5e+06
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_MKTSEGMENT+Q1.C_ACCTBAL
+Q1.C_PHONE+Q1.C_NATIONKEY+Q1.C_ADDRESS
+Q1.C_NAME+Q1.C_CUSTKEY

Partition Column Names:

+NONE

9) From Operator #7

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_COMMENT+Q2.O_SHIPPRIORITY
+Q2.O_CLERK+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS
+Q2.O_ORDERKEY+Q2.O_CUSTKEY

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

10) To Operator #2

Estimated number of rows: 7.5951e+06
Partition Map ID: 4
Partitioning: (MULT)

540 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Multiple Partitions
Number of columns: 17
Subquery predicate ID: Not Applicable

Column Names:

+Q3.C_COMMENT+Q3.C_MKTSEGMENT+Q3.C_ACCTBAL
+Q3.C_PHONE+Q3.C_NATIONKEY+Q3.C_ADDRESS
+Q3.C_NAME+Q3.C_CUSTKEY+Q3.O_COMMENT
+Q3.O_SHIPPRIORITY+Q3.O_CLERK
+Q3.O_ORDERPRIORITY+Q3.O_ORDERDATE
+Q3.O_TOTALPRICE+Q3.O_ORDERSTATUS+Q3.O_CUSTKEY
+Q3.O_ORDERKEY

Partition Column Names:

+1: Q3.O_ORDERKEY

4) TQ : (Table Queue)
Cumulative Total Cost: 128671
Cumulative CPU Cost: 5.24183e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 1372.57
Cumulative Re-CPU Cost: 2.583e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.0828
Cumulative Comm Cost:743805
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32173
Remote communication cost:1.18291e+06

Arguments:

JN INPUT: (Join input leg)

OUTER
LISTENER: (Listener Table Queue type)

FALSE
TQMERGE : (Merging Table Queue flag)

FALSE
TQREAD : (Table Queue Read type)

READ AHEAD
TQSEND : (Table Queue Write type)

BROADCAST
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 541

2) From Operator #5

Estimated number of rows: 1.5e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_MKTSEGMENT+Q1.C_ACCTBAL
+Q1.C_PHONE+Q1.C_NATIONKEY+Q1.C_ADDRESS
+Q1.C_NAME+Q1.C_CUSTKEY

Partition Column Names:

+NONE

Output Streams:

3) To Operator #3

Estimated number of rows: 1.5e+06
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_MKTSEGMENT+Q1.C_ACCTBAL
+Q1.C_PHONE+Q1.C_NATIONKEY+Q1.C_ADDRESS
+Q1.C_NAME+Q1.C_CUSTKEY

Partition Column Names:

+NONE

5) SHIP : (Ship)
Cumulative Total Cost: 127364
Cumulative CPU Cost: 2.78171e+09
Cumulative I/O Cost: 32173
Cumulative Re-Total Cost: 1372.57
Cumulative Re-CPU Cost: 2.583e+09
Cumulative Re-I/O Cost: 0

542 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative First Row Cost: 25.0278
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 32173
Remote communication cost:1.18291e+06

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."C_CUSTKEY", A0."C_NAME", A0."C_ADDRESS", A0."C_NATIONKEY",
A0."C_PHONE", A0."C_ACCTBAL", A0."C_MKTSEGMENT", A0."C_COMMENT" FROM
"IITEST"."CUSTOMER" A0

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object ORA.CUSTOMER

Estimated number of rows: 1.5e+06
Partition Map ID: -100
Partitioning: (COOR)

Coordinator Partition
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.C_COMMENT+Q1.C_MKTSEGMENT
+Q1.C_ACCTBAL+Q1.C_PHONE+Q1.C_NATIONKEY
+Q1.C_ADDRESS+Q1.C_NAME+Q1.C_CUSTKEY

Partition Column Names:

+NONE

Output Streams:

2) To Operator #4

Estimated number of rows: 1.5e+06
Partition Map ID: -100

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 543

Partitioning: (COOR)
Coordinator Partition

Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q1.C_COMMENT+Q1.C_MKTSEGMENT+Q1.C_ACCTBAL
+Q1.C_PHONE+Q1.C_NATIONKEY+Q1.C_ADDRESS
+Q1.C_NAME+Q1.C_CUSTKEY

Partition Column Names:

+NONE

7) FETCH : (Fetch)
Cumulative Total Cost: 53.8812
Cumulative CPU Cost: 200124
Cumulative I/O Cost: 17.5276
Cumulative Re-Total Cost: 43.4524
Cumulative Re-CPU Cost: 145972
Cumulative Re-I/O Cost: 15.5276
Cumulative First Row Cost: 31.2557
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 18.0566

Arguments:

JN INPUT: (Join input leg)

INNER
MAX RIDS: (Maximum RIDs per list prefetch request)

512
MAXPAGES: (Maximum pages for prefetch)

3
PREFETCH: (Type of Prefetch)

LIST
ROWLOCK : (Row Lock intent)

NEXT KEY SHARE
TABLOCK : (Table Lock intent)

INTENT SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY

Predicates:

2) Sargable Predicate

Relational Operator: Equal (=)

544 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

Input Streams:

7) From Operator #8

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

8) From Object TPCD.ORDERS

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_COMMENT+Q2.O_SHIPPRIORITY+Q2.O_CLERK
+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS
+Q2.O_ORDERKEY+Q2.O_CUSTKEY

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 545

9) To Operator #3

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.O_COMMENT+Q2.O_SHIPPRIORITY
+Q2.O_CLERK+Q2.O_ORDERPRIORITY+Q2.O_ORDERDATE
+Q2.O_TOTALPRICE+Q2.O_ORDERSTATUS
+Q2.O_ORDERKEY+Q2.O_CUSTKEY

Partition Column Names:

+1: Q2.O_ORDERKEY

8) RIDSCN: (Row Identifier Scan)
Cumulative Total Cost: 20.8488
Cumulative CPU Cost: 91759.9
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 10.4222
Cumulative Re-CPU Cost: 41857
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 20.8481
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 3

Arguments:

NUMROWS : (Estimated number of rows)

6

Input Streams:

6) From Operator #9

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

546 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

7) To Operator #7

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

9) SORT : (Sort)
Cumulative Total Cost: 20.8481
Cumulative CPU Cost: 90472.9
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 10.4208
Cumulative Re-CPU Cost: 39054.2
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 20.8481
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 3

Arguments:

DUPLWARN: (Duplicates Warning flag)

TRUE
NUMROWS : (Estimated number of rows)

6
ROWWIDTH: (Estimated width of rows)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 547

12
SORTKEY : (Sort Key column)

1: Q2.RID(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

TRUE

Input Streams:

5) From Operator #10

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_CUSTKEY(A)+Q2.RID

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

6) To Operator #8

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID(A)

Partition Column Names:

+1: Q2.O_ORDERKEY

10) IXSCAN: (Index Scan)

548 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative Total Cost: 20.8465
Cumulative CPU Cost: 87515.2
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 10.4208
Cumulative Re-CPU Cost: 39054.2
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 20.8419
Cumulative Comm Cost:0
Cumulative First Comm Cost:0
Estimated Bufferpool Buffers: 3

Arguments:

MAXPAGES: (Maximum pages for prefetch)

1
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NONE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

INTENT NONE

Predicates:

2) Start Key Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

2) Stop Key Predicate
Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 5.06148e-07

Predicate Text:

(Q2.O_CUSTKEY = Q1.C_CUSTKEY)

Input Streams:

4) From Object TPCD.O_CK

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 549

Estimated number of rows: 1.00038e+07
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_CUSTKEY(A)+Q2.RID

Partition Column Names:

+1: Q2.O_ORDERKEY

Output Streams:

5) To Operator #9

Estimated number of rows: 5.0634
Partition Map ID: 4
Partitioning: (MULT)

Multiple Partitions
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.O_CUSTKEY(A)+Q2.RID

Partition Column Names:

+1: Q2.O_ORDERKEY

Objects Used in Access Plan:

Schema: TPCD
Name: O_CK
Type: Index

Time of creation: 2004-06-04-07.02.17.390759
Last statistics update: 2004-06-09-23.20.10.138687
Number of columns: 1
Number of rows: 10003789
Width of rows: -1
Number of buffer pool pages: 296184
Distinct row values: No

550 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Tablespace name: INDEX_TS
Tablespace overhead: 9.500000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 48
Container extent page count: 16
Index clustering statistic: 0.000046
Index leaf pages: 18875
Index tree levels: 3
Index full key cardinality: 1975707
Index first key cardinality: 1975707
Index first 2 keys cardinality: -1
Index first 3 keys cardinality: -1
Index first 4 keys cardinality: -1
Index sequential pages: 18874
Index page density: 99
Index avg sequential pages: 18874
Index avg gap between sequences:0
Index avg random pages: 0
Fetch avg sequential pages: -1
Fetch avg gap between sequences:-1
Fetch avg random pages: -1
Index RID count: 10003789
Index deleted RID count: 0
Index empty leaf pages: 0
Base Table Schema: TPCD
Base Table Name: ORDERS
Columns in index:

O_CUSTKEY

Schema: ORA
Name: CUSTOMER
Type: Nickname

Time of creation: 2004-06-10-08.32.16.950465
Last statistics update:
Number of columns: 8
Number of rows: 1500000
Width of rows: 236
Number of buffer pool pages: 32173
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: TPCD
Name: ORDERS

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 551

Type: Table
Time of creation: 2004-06-04-07.02.15.736633
Last statistics update: 2004-06-09-23.20.10.138687
Number of columns: 9
Number of rows: 10003789
Width of rows: 115
Number of buffer pool pages: 296184
Distinct row values: No
Tablespace name: DATA_TS
Tablespace overhead: 9.500000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 48
Container extent page count: 16
Table overflow record count: 0
Table Active Blocks: -1

Access plan description
The access plan graph for our SQL query has been highlighted in Example B-10
on page 516 under “Access Plan”.

Reading this graph bottom up reveals a significant difference in the access plan
for the same query when a fenced wrapper is used:

� The directed table queue operator (DTQ operator 2) indicates that a nested
loop join (NLJOIN operator 3) of the orders table and customer table occurs in
parallel on individual partitions, and the combined result of the rows
(2.27853e+07) from the individual partitions (7.5951e+06) is directed to the
coordinator partition and the RETURN operator 1.

� As in the previous trusted wrapper scenario, the bottom left part of the graph
indicates that the ORA.CUSTOMER nickname has 1.5 million rows according
to the DB2 II catalog statistics, and that all these rows are processed by the
SHIP operator 5.

� The BTQ operator 4 represents the distribution of remote data from the fmp
process of the fenced wrapper to the db2agntp processes that were created
in each of the partitions for accessing the TPCD.ORDERS table.

The 1.5e+06 rows from the SHIP operator 5 will be the outer table (see
Arguments of the BTQ operator 4) of a nested loop join (NLJOIN operator 3)
with the orders table. The inner table of this nested loop join is estimated to
return 5.0634 rows, and the result of the nested loop join is estimated to be
7.5951e+06 rows.

� The 5.0634 rows for the inner table of the nested loop join are formed from a
series of operator executions involving a IXSCAN (operator 10), SORT
(operator 9), RIDSCN (operator 8), and FETCH (operator 7). We have not

552 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

elaborated on these operators since they follow the same logic discussed in
earlier sections.

� The total cost is estimated to be 214094 timerons, and intra-parallelism is not
used (Query Degree:1). However, inter-partition parallelism is used, as
indicated by the presence of the BTQ and DTQ operators.

Analysis

The following observations apply to the db2exfmt output shown in Example B-10
on page 516.

� DTQ appears above the NLJOIN, meaning that the join is done in the
partitions and not by the db2agent process at the coordinator node.

� BTQ above SHIP means that the data received from the SHIP operation is
distributed to all the partitions so that the NLJOIN between the data from the
nickname and the ORDERS table can be done in the partitions.

� The IXSCAN operator indicates that an index on the ORDERS table could be
used to find the needed records.

� The total cost is estimated to be 214094 timerons, which is considerably less
than the estimated cost of 3.4124e+07 timerons with the trusted wrapper.
Examining the Remote communication cost (1.18291e+06) field in the
RETURN operator 1 shows that, while the remote communications cost is the
same in both the trusted and fenced wrapper cases, the local processing
costs are much higher for the trusted wrapper scenario. The significant
difference is the broadcast of nickname data to the individual partitions, which
enable the join of the orders and customer table to occur completely in
parallel on the federated server.

Important: Bearing in mind that the EXPLAIN output information is DB2
optimizer estimates only and does not necessarily reflect actual runtime
metrics, you should be cautious in drawing conclusions about relative costs
associated with each operator, as well as relying on the number of estimated
rows retrieved or returned by the various operators. EXPLAIN output
information is best used in conjunction with runtime metrics gathered through
monitoring.

Note: There is no indication of the wrapper type (trusted or fenced) in the
db2exfmt output.

The wrapper type is stored in DB2 system catalog table
SYSIBM.SYSWRAPOPTIONS or view SYSCAT.WRAPOPTIONS

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 553

Our analysis points to the potential for significant performance improvement
using the fenced wrapper for this particular SQL query, which should be validated
in a regression test environment before committing the change to a production
environment.

DB2_MAXIMAL_PUSHDOWN = ‘N’
We used the 32-bit instance for this example. Our objective was to review the
access plan in a db2exfmt output for a federated query that joins nicknames
referencing remote DB2 and Oracle data sources with the default server option of
DB2_MAXIMAL_PUSHDOWN = ‘N’, as well as with
DB2_MAXIMAL_PUSHDOWN = ‘Y’. No local data access is involved, and
intra-partition parallelism is disabled (database manager configuration option
INTRA_PARALLEL = NO).

Our SQL query finds which supplier should be selected to place an order for a
given (brass, size 15) part in a given region (Europe) based on the minimum
supplier cost. The parts, supplier, and parts supplier tables reside on DB2, while
the nation and region tables reside on Oracle.

Example B-12 shows the complete db2exfmt output for our SQL query. The SQL
statement we issued has been highlighted under “Original statement” in this
output.

Example: B-12 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘N’

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-07-01-16.44.30.615209
EXPLAIN_REQUESTER: DB2I32

Database Context:

Parallelism: None
CPU Speed: 4.802167e-07
Comm Speed: 100
Buffer Pool size: 75000

554 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE,
 S_COMMENT
FROM DB2.PART, DB2.SUPPLIER, DB2.PARTSUPP, ORA.NATION, ORA.REGION
WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15 AND
 P_TYPE LIKE '%BRASS' AND S_NATIONKEY = N_NATIONKEY AND R_NAME =
 'EUROPE' AND PS_SUPPLYCOST =
 (SELECT MIN(PS_SUPPLYCOST)
 FROM db2.PARTSUPP, db2.SUPPLIER, ora.NATION, ora.REGION
 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND S_NATIONKEY =
 N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY AND R_NAME = 'EUROPE')
ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY
FETCH FIRST 100 ROWS ONLY

Optimized Statement:

SELECT Q10.S_ACCTBAL AS "S_ACCTBAL", Q10.S_NAME AS "S_NAME", Q8.N_NAME AS
 "N_NAME", Q11.P_PARTKEY AS "P_PARTKEY", Q11.P_MFGR AS "P_MFGR",
 Q10.S_ADDRESS AS "S_ADDRESS", Q10.S_PHONE AS "S_PHONE", Q10.S_COMMENT
 AS "S_COMMENT"
FROM
 (SELECT MIN(Q5.$C0)
 FROM

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 555

 (SELECT Q4.PS_SUPPLYCOST
 FROM ORA.REGION AS Q1, ORA.NATION AS Q2, DB2.SUPPLIER AS Q3,
 DB2.PARTSUPP AS Q4
 WHERE (Q1.R_NAME = 'EUROPE ') AND (Q2.N_REGIONKEY = Q1.R_REGIONKEY) AND
 (Q3.S_NATIONKEY = Q2.N_NATIONKEY) AND (Q3.S_SUPPKEY =
 Q4.PS_SUPPKEY) AND (Q11.P_PARTKEY = Q4.PS_PARTKEY)) AS Q5) AS
 Q6, ORA.REGION AS Q7, ORA.NATION AS Q8, DB2.PARTSUPP AS Q9,
 DB2.SUPPLIER AS Q10, DB2.PART AS Q11
WHERE (Q9.PS_SUPPLYCOST = Q6.$C0) AND (Q7.R_NAME = 'EUROPE ') AND
 (Q10.S_NATIONKEY = Q8.N_NATIONKEY) AND (Q11.P_TYPE LIKE '%BRASS') AND
 (Q11.P_SIZE = 15) AND (Q10.S_SUPPKEY = Q9.PS_SUPPKEY) AND
 (Q11.P_PARTKEY = Q9.PS_PARTKEY)
ORDER BY Q10.S_ACCTBAL DESC, Q8.N_NAME, Q10.S_NAME, Q11.P_PARTKEY

Access Plan:

Total Cost: 696494
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 0.41902
 NLJOIN
 (2)
 696494
 27710.2
 /----+---\
 0.41902 1
 TBSCAN SHIP
 (3) (33)
 696494 0.00418893
 27710.2 0
 | |
 0.41902 5
 SORT NICKNM: ORA
 (4) REGION
 696494
 27710.2
 |
 0.41902
 NLJOIN
 (5)
 696494
 27710.2
 /-----------+----------\

556 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 0.41902 1
 NLJOIN SHIP
 (6) (31)
 696494 0.00605841
 27710.2 0
 /----------+----------\ |
 0.41902 1 25
 NLJOIN SHIP NICKNM: ORA
 (7) (28) NATION
 696419 75.0255
 27707.2 3
 /--------+-------\ |
 36042.4 1.16257e-05 100000
 SHIP FILTER NICKNM: DB2
 (8) (12) SUPPLIER
 692587 275.117
 27696.2 11
 /------+-----\ |
 2e+06 8e+06 1
 NICKNM: DB2 NICKNM: DB2 GRPBY
 PART PARTSUPP (13)
 275.116
 11
 |
 0.8
 MSJOIN
 (14)
 275.116
 11
 /--------+--------\
 4 0.2
 TBSCAN FILTER
 (15) (21)
 275.092 0.022021
 11 0
 | |
 4 5
 SORT TBSCAN
 (16) (22)
 275.089 0.022021
 11 0
 | |
 4 5
 SHIP SORT
 (17) (23)
 275.086 0.0189106
 11 0
 /------+-----\ |
 100000 8e+06 5

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 557

 NICKNM: DB2 NICKNM: DB2 SHIP
 SUPPLIER PARTSUPP (24)
 0.0160508
 0
 /------+-----\
 5 25
 NICKNM: ORA NICKNM: ORA
 REGION NATION

1) RETURN: (Return Result)
Cumulative Total Cost: 696494
Cumulative CPU Cost: 7.78741e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 3656.98
Cumulative Re-CPU Cost: 7.61527e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696494
Estimated Bufferpool Buffers: 1
Remote communication cost:20278.7

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

29) From Operator #2

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)
+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

2) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696494

558 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative CPU Cost: 7.78741e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 3656.98
Cumulative Re-CPU Cost: 7.61527e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696494
Estimated Bufferpool Buffers: 1
Remote communication cost:20278.7

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Input Streams:

26) From Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

28) From Operator #33

Estimated number of rows: 1
Number of columns: 0
Subquery predicate ID: Not Applicable

Output Streams:

29) To Operator #1

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 559

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)
+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 696494
Cumulative CPU Cost: 7.7874e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 3656.98
Cumulative Re-CPU Cost: 7.61527e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696494
Estimated Bufferpool Buffers: 0
Remote communication cost:20272.5

Arguments:

JN INPUT: (Join input leg)

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

25) From Operator #4

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

Output Streams:

26) To Operator #2

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

560 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

4) SORT : (Sort)
Cumulative Total Cost: 696494
Cumulative CPU Cost: 7.7874e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 3656.98
Cumulative Re-CPU Cost: 7.61527e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696494
Estimated Bufferpool Buffers: 27701.2
Remote communication cost:20272.5

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

1
ROWWIDTH: (Estimated width of rows)

204
SORTKEY : (Sort Key column)

1: Q10.S_ACCTBAL(D)
SORTKEY : (Sort Key column)

2: Q8.N_NAME(A)
SORTKEY : (Sort Key column)

3: Q10.S_NAME(A)
SORTKEY : (Sort Key column)

4: Q11.P_PARTKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

24) From Operator #5

Estimated number of rows: 0.41902
Number of columns: 12
Subquery predicate ID: Not Applicable

Column Names:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 561

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q9.PS_SUPPKEY+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

Output Streams:

25) To Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

5) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696494
Cumulative CPU Cost: 7.78739e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 3656.98
Cumulative Re-CPU Cost: 7.61527e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696494
Estimated Bufferpool Buffers: 27701.2
Remote communication cost:20272.5

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

4) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

562 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Predicate Text:

(Q10.S_NATIONKEY = Q8.N_NATIONKEY)

Input Streams:

21) From Operator #6

Estimated number of rows: 0.41902
Number of columns: 11
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

23) From Operator #31

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

Output Streams:

24) To Operator #4

Estimated number of rows: 0.41902
Number of columns: 12
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q9.PS_SUPPKEY+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

6) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696494

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 563

Cumulative CPU Cost: 7.78738e+09
Cumulative I/O Cost: 27710.2
Cumulative Re-Total Cost: 3656.97
Cumulative Re-CPU Cost: 7.61526e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696494
Estimated Bufferpool Buffers: 27700.2
Remote communication cost:20266.3

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE
JN INPUT: (Join input leg)

OUTER

Predicates:

7) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1e-05

Predicate Text:

(Q10.S_SUPPKEY = Q9.PS_SUPPKEY)

Input Streams:

18) From Operator #7

Estimated number of rows: 0.41902
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q11.P_MFGR+Q11.P_PARTKEY

20) From Operator #28

Estimated number of rows: 1
Number of columns: 7

564 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_SUPPKEY(A)+Q10.S_NATIONKEY(A)
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL

Output Streams:

21) To Operator #5

Estimated number of rows: 0.41902
Number of columns: 11
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

7) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 696419
Cumulative CPU Cost: 7.78732e+09
Cumulative I/O Cost: 27707.2
Cumulative Re-Total Cost: 3656.96
Cumulative Re-CPU Cost: 7.61523e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 696419
Estimated Bufferpool Buffers: 27697.2
Remote communication cost:20260.1

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE
JN INPUT: (Join input leg)

OUTER

Predicates:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 565

2) Predicate used in Join
Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

Input Streams:

3) From Operator #8

Estimated number of rows: 36042.4
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY+Q11.P_MFGR
+Q11.P_PARTKEY

17) From Operator #12

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

Output Streams:

18) To Operator #6

Estimated number of rows: 0.41902
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q11.P_MFGR+Q11.P_PARTKEY

8) SHIP : (Ship)

566 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative Total Cost: 692587
Cumulative CPU Cost: 3.79842e+08
Cumulative I/O Cost: 27696.2
Cumulative Re-Total Cost: 99.7818
Cumulative Re-CPU Cost: 2.07785e+08
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 151.477
Estimated Bufferpool Buffers: 27697.2
Remote communication cost:20237.9

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."P_PARTKEY", A0."P_MFGR", A1."PS_SUPPKEY",
A1."PS_SUPPLYCOST" FROM "TPCD"."PART" A0, "TPCD"."PARTSUPP" A1 WHERE
(A0."P_SIZE" = 15) AND (A0."P_TYPE" LIKE '%BRASS') AND (A0."P_PARTKEY" =
A1."PS_PARTKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object DB2.PART

Estimated number of rows: 2e+06
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q11.RID+Q11.P_MFGR+Q11.P_TYPE+Q11.P_SIZE
+Q11.P_PARTKEY

2) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 567

+Q9.RID+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q9.PS_PARTKEY

Output Streams:

3) To Operator #7

Estimated number of rows: 36042.4
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY+Q11.P_MFGR
+Q11.P_PARTKEY

12) FILTER: (Filter)
Cumulative Total Cost: 275.117
Cumulative CPU Cost: 242920
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.117
Cumulative Re-CPU Cost: 242920
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.117
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

2) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

Input Streams:

16) From Operator #13

568 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

Output Streams:

17) To Operator #7

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

13) GRPBY : (Group By)
Cumulative Total Cost: 275.116
Cumulative CPU Cost: 241585
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.116
Cumulative Re-CPU Cost: 241585
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.116
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

FALSE
GROUPBYN: (Number of Group By columns)

0
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

15) From Operator #14

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 569

Estimated number of rows: 0.8
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

Output Streams:

16) To Operator #12

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

14) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 275.116
Cumulative CPU Cost: 241135
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.116
Cumulative Re-CPU Cost: 241135
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.116
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

EARLYOUT: (Early Out flag)

NONE
INNERCOL: (Inner Order Columns)

1: Q2.N_NATIONKEY(A)
OUTERCOL: (Outer Order columns)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

11) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No

570 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Filter Factor: 0.04

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

Input Streams:

8) From Operator #15

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

14) From Operator #21

Estimated number of rows: 0.2
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

15) To Operator #13

Estimated number of rows: 0.8
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

15) TBSCAN: (Table Scan)
Cumulative Total Cost: 275.092
Cumulative CPU Cost: 191030
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0504
Cumulative Re-CPU Cost: 104891

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 571

Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 275.09
Estimated Bufferpool Buffers: 0
Remote communication cost:10.8594

Arguments:

JN INPUT: (Join input leg)

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

7) From Operator #16

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

Output Streams:

8) To Operator #14

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

16) SORT : (Sort)
Cumulative Total Cost: 275.089
Cumulative CPU Cost: 185333
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0476
Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 0

572 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative First Row Cost: 275.089
Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

4
ROWWIDTH: (Estimated width of rows)

16
SORTKEY : (Sort Key column)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

6) From Operator #17

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

Output Streams:

7) To Operator #15

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

17) SHIP : (Ship)
Cumulative Total Cost: 275.086
Cumulative CPU Cost: 180037
Cumulative I/O Cost: 11

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 573

Cumulative Re-Total Cost: 25.0476
Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 125.044
Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."PS_SUPPLYCOST", A1."S_NATIONKEY" FROM "TPCD"."PARTSUPP"
A0, "TPCD"."SUPPLIER" A1 WHERE (:H0 = A0."PS_PARTKEY") AND (A1."S_SUPPKEY" =
A0."PS_SUPPKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

4) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q4.RID+Q4.PS_SUPPLYCOST+Q4.PS_SUPPKEY
+Q4.PS_PARTKEY

5) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q3.RID+Q3.S_NATIONKEY+Q3.S_SUPPKEY

Output Streams:

6) To Operator #16

574 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

21) FILTER: (Filter)
Cumulative Total Cost: 0.022021
Cumulative CPU Cost: 45856.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00924657
Cumulative Re-CPU Cost: 19255
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0196007
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

11) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

Input Streams:

13) From Operator #22

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 575

Output Streams:

14) To Operator #14

Estimated number of rows: 0.2
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

22) TBSCAN: (Table Scan)
Cumulative Total Cost: 0.022021
Cumulative CPU Cost: 45856.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00924657
Cumulative Re-CPU Cost: 19255
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0196007
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

12) From Operator #23

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

576 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

13) To Operator #21

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

23) SORT : (Sort)
Cumulative Total Cost: 0.0189106
Cumulative CPU Cost: 39379.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00613621
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0189106
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

5
ROWWIDTH: (Estimated width of rows)

8
SORTKEY : (Sort Key column)

1: Q2.N_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

11) From Operator #24

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 577

Output Streams:

12) To Operator #22

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

24) SHIP : (Ship)
Cumulative Total Cost: 0.0160508
Cumulative CPU Cost: 33424
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00613621
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00919759
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A1."N_NATIONKEY" FROM "IITEST"."REGION" A0, "IITEST"."NATION"
A1 WHERE (A0."R_NAME" = 'EUROPE ') AND (A1."N_REGIONKEY" =
A0."R_REGIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

9) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 3
Subquery predicate ID: Not Applicable

578 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q1.RID+Q1.R_NAME+Q1.R_REGIONKEY

10) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.N_REGIONKEY+Q2.N_NATIONKEY

Output Streams:

11) To Operator #23

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY

28) SHIP : (Ship)
Cumulative Total Cost: 75.0255
Cumulative CPU Cost: 53193.6
Cumulative I/O Cost: 3
Cumulative Re-Total Cost: 50.0187
Cumulative Re-CPU Cost: 38888.6
Cumulative Re-I/O Cost: 2
Cumulative First Row Cost: 75.0241
Estimated Bufferpool Buffers: 4520
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 579

SELECT A0."S_NATIONKEY", A0."S_ACCTBAL", A0."S_NAME", A0."S_ADDRESS",
A0."S_PHONE", A0."S_COMMENT" FROM "TPCD"."SUPPLIER" A0 WHERE (A0."S_SUPPKEY" =
:H0) ORDER BY A0."S_SUPPKEY" ASC, 1 ASC FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

19) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL

Output Streams:

20) To Operator #6

Estimated number of rows: 1
Number of columns: 7
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_SUPPKEY(A)+Q10.S_NATIONKEY(A)
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL

31) SHIP : (Ship)
Cumulative Total Cost: 0.00605841
Cumulative CPU Cost: 12616
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00399012
Cumulative Re-CPU Cost: 8309
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00498321
Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

580 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT A0."N_NAME" FROM "IITEST"."NATION" A0 WHERE (:H0 =
A0."N_NATIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

22) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q8.RID+Q8.N_NAME+Q8.N_NATIONKEY

Output Streams:

23) To Operator #5

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

33) SHIP : (Ship)
Cumulative Total Cost: 0.00418893
Cumulative CPU Cost: 8723
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00214609
Cumulative Re-CPU Cost: 4469
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00313918

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 581

Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT '1' FROM "IITEST"."REGION" A0 WHERE (A0."R_NAME" = 'EUROPE
')

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

27) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.RID+Q7.R_NAME

Output Streams:

28) To Operator #2

Estimated number of rows: 1
Number of columns: 0
Subquery predicate ID: Not Applicable

Objects Used in Access Plan:

Schema: DB2
Name: PART
Type: Nickname

Time of creation: 2004-06-10-08.38.47.722759
Last statistics update:

582 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Number of columns: 9
Number of rows: 2000000
Width of rows: 70
Number of buffer pool pages: 76238
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: DB2
Name: PARTSUPP
Type: Nickname

Time of creation: 2004-06-10-08.38.47.872025
Last statistics update:
Number of columns: 5
Number of rows: 8000000
Width of rows: 28
Number of buffer pool pages: 319290
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: DB2
Name: SUPPLIER
Type: Nickname

Time of creation: 2004-06-10-08.38.47.795922
Last statistics update:
Number of columns: 7
Number of rows: 100000
Width of rows: 157
Number of buffer pool pages: 4093
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: NATION
Type: Nickname

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 583

Time of creation: 2004-06-10-08.38.38.710626
Last statistics update: 2004-06-10-19.56.42.522824
Number of columns: 4
Number of rows: 25
Width of rows: 57
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: REGION
Type: Nickname

Time of creation: 2004-06-10-08.38.38.810764
Last statistics update: 2004-06-10-19.56.42.820988
Number of columns: 3
Number of rows: 5
Width of rows: 53
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Access plan description
The access plan graph for our SQL query has been highlighted in Example B-12
on page 554 under “Access Plan”.

Reading this graph bottom up reveals the following:

� The bottom left part of the graph indicates that a join of the PART and
PARTSUPP nicknames with cardinalities of 2e+06 and 8e+06 rows,
respectively, according to the DB2 II catalog, are pushed down to the remote
DB2 via the SHIP operator 8. The RMTQTXT field of Arguments contains the
SQL fragment executed at the remote DB2, and returns an estimated
36042.4 rows to the federated server for participating as the outer table (see
the JN INPUT field in Arguments of the SHIP operator 8) in a nested loop join
(NLJOIN operator 7). Four columns are returned as described in the Output
Stream section of the SHIP operator 8.

584 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

� The 1.16257e-05 rows for the inner table of the nested loop join (NLJOIN
operator 7) are formed from a series of executions involving SHIP operator
17, SORT operator 16, TBSCAN operator 15, MSJOIN operator 14, SHIP
operator 24, SORT operator 23, TBSCAN operator 22, FILTER operator 21,
GRPBY operator 13 and FILTER operator 12. The nicknames involved in
deriving the rows of the inner table are SUPPLIER and PARTSUPP from
DB2, and REGION and NATION from Oracle.

� The 0.41902 estimated rows from the nested loop join (NLJOIN operator 7)
form the outer table of another nested loop join (NLJOIN operator 6) with an
inner table that returns an estimated 1 row from the SHIP operator 27, which
accesses the SUPPLIER nickname in DB2.

� The estimated 0.41902 estimated rows from the nested loop join (NLJOIN
operator 5) in turn form the outer table of another nested loop join (NLJOIN
operator 6) with an inner table that returns an estimated 1 row from the SHIP
operator 31, which accesses the NATION nickname in Oracle.

� The estimated 0.41902 estimated rows from the nested loop join (NLJOIN
operator 6) is sorted (SORT operator 4) on four columns (descending
S_ACCTBAL, ascending N_NAME, ascending S_NAME, and ascending
P_PARTKEY), and written to a temporary table.

� The TBSCAN operator 3 retrieves the estimated 0.41902 sorted rows in the
temporary table, which forms the outer table of another nested loop join
(NLJOIN operator 2) with an inner table that returns an estimated 1 row from
the SHIP operator 33, which accesses the REGION nickname in Oracle.

� The 0.41902 estimated rows in the nested loop join result (NLJOIN operator
2) will be returned to the user via the RETURN operator 1.

� The total cost is estimated to be 696494 timerons, and there is no parallelism
involved (Query Degree:1 and no table queue operators in the Access Plan).

Analysis

Important: Bearing in mind that the EXPLAIN output information is DB2
optimizer estimates only and does not necessarily reflect actual runtime
metrics, you should be cautious in drawing conclusions about relative costs
associated with each operator, as well as relying on the number of estimated
rows retrieved or returned by the various operators. EXPLAIN output
information is best used in conjunction with runtime metrics gathered through
monitoring.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 585

The following observations apply to the db2exfmt output shown in Example B-12
on page 554.

� The cardinality of the nicknames appear to be valid since the DB2 optimizer
default of 1000 rows does not appear. This, however, does not guarantee that
the DB2 II catalog reflects the actual number of rows at the remote data
source.

� There are a few sorts involved (operators 4, 16 and 23) with very few rows
estimated to be sorted. The Database Context shows the Sort Heap size to
be 20000 pages, while the Buffer Pool size is 75000. There appear to be no
spillover concerns associated with sorting.

� For some reason, the DB2 optimizer has not chosen to push down the join of
the SUPPLIER table (SHIP operator 28) along with the PART and PARTSUPP
nicknames (SHIP operator 8), and instead chose to perform an additional join
(NLJOIN operator 6).

Our analysis points to a possible investigation of why a 3-way join of PART,
PARTSUPP, and SUPPLIER was not pushed down to the remote DB2 data
source. However, this further investigation should be conducted only after actual
runtime metrics are gathered for this query and performance is considered to be
inadequate.

DB2_MAXIMAL_PUSHDOWN = ‘Y’
In this scenario, we ran the same query and environment used in
“DB2_MAXIMAL_PUSHDOWN = ‘N’” on page 554, with the only difference being
that the server definition was set to DB2_MAXIMAL_PUSHDOWN = ‘Y’.

Example B-13 shows the complete db2exfmt output for our SQL query. The SQL
statement we issued has been highlighted under “Original statement” in this
output.

Example: B-13 db2exfmt output for DB2_MAXIMAL_PUSHDOWN = ‘Y’

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

Note: There is no indication of the server option
(DB2_MAXIMAL_PUSHDOWN set to ‘Y’ or ‘N’) in the db2exfmt output.

The server options are stored in the DB2 system catalog table
SYSIBM.SYSSERVEROPTIONS or view SYSCAT.SERVEROPTIONS.

586 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-07-01-17.24.10.365830
EXPLAIN_REQUESTER: DB2I32

Database Context:

Parallelism: None
CPU Speed: 4.802167e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE,
 S_COMMENT
FROM DB2.PART, DB2.SUPPLIER, DB2.PARTSUPP, ORA.NATION, ORA.REGION
WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND P_SIZE = 15 AND
 P_TYPE LIKE '%BRASS' AND S_NATIONKEY = N_NATIONKEY AND R_NAME =
 'EUROPE' AND PS_SUPPLYCOST =
 (SELECT MIN(PS_SUPPLYCOST)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 587

 FROM db2.PARTSUPP, db2.SUPPLIER, ora.NATION, ora.REGION
 WHERE P_PARTKEY = PS_PARTKEY AND S_SUPPKEY = PS_SUPPKEY AND S_NATIONKEY =
 N_NATIONKEY AND N_REGIONKEY = R_REGIONKEY AND R_NAME = 'EUROPE')
ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY
FETCH FIRST 100 ROWS ONLY

Optimized Statement:

SELECT Q10.S_ACCTBAL AS "S_ACCTBAL", Q10.S_NAME AS "S_NAME", Q8.N_NAME AS
 "N_NAME", Q11.P_PARTKEY AS "P_PARTKEY", Q11.P_MFGR AS "P_MFGR",
 Q10.S_ADDRESS AS "S_ADDRESS", Q10.S_PHONE AS "S_PHONE", Q10.S_COMMENT
 AS "S_COMMENT"
FROM
 (SELECT MIN(Q5.$C0)
 FROM
 (SELECT Q4.PS_SUPPLYCOST
 FROM ORA.REGION AS Q1, ORA.NATION AS Q2, DB2.SUPPLIER AS Q3,
 DB2.PARTSUPP AS Q4
 WHERE (Q1.R_NAME = 'EUROPE ') AND (Q2.N_REGIONKEY = Q1.R_REGIONKEY) AND
 (Q3.S_NATIONKEY = Q2.N_NATIONKEY) AND (Q3.S_SUPPKEY =
 Q4.PS_SUPPKEY) AND (Q11.P_PARTKEY = Q4.PS_PARTKEY)) AS Q5) AS
 Q6, ORA.REGION AS Q7, ORA.NATION AS Q8, DB2.PARTSUPP AS Q9,
 DB2.SUPPLIER AS Q10, DB2.PART AS Q11
WHERE (Q9.PS_SUPPLYCOST = Q6.$C0) AND (Q7.R_NAME = 'EUROPE ') AND
 (Q10.S_NATIONKEY = Q8.N_NATIONKEY) AND (Q11.P_TYPE LIKE '%BRASS') AND
 (Q11.P_SIZE = 15) AND (Q10.S_SUPPKEY = Q9.PS_SUPPKEY) AND
 (Q11.P_PARTKEY = Q9.PS_PARTKEY)
ORDER BY Q10.S_ACCTBAL DESC, Q8.N_NAME, Q10.S_NAME, Q11.P_PARTKEY

Access Plan:

Total Cost: 712543
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 0.41902
 NLJOIN
 (2)
 712543
 31800.2
 /----+---\
 0.41902 1
 TBSCAN SHIP

588 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

 (3) (31)
 712543 0.00418893
 31800.2 0
 | |
 0.41902 5
 SORT NICKNM: ORA
 (4) REGION
 712543
 31800.2
 |
 0.41902
 NLJOIN
 (5)
 712543
 31800.2
 /-------------+------------\
 0.41902 1
 NLJOIN SHIP
 (6) (29)
 712543 0.00605841
 31800.2 0
 /------------+------------\ |
 36042.4 1.16257e-05 25
 SHIP FILTER NICKNM: ORA
 (7) (13) NATION
 708711 275.117
 31789.2 11
 +-----------------+-----------------+ |
 100000 2e+06 8e+06 1
 NICKNM: DB2 NICKNM: DB2 NICKNM: DB2 GRPBY
 SUPPLIER PART PARTSUPP (14)
 275.116
 11
 |
 0.8
 MSJOIN
 (15)
 275.116
 11
 /--------+--------\
 4 0.2
 TBSCAN FILTER
 (16) (22)
 275.092 0.022021
 11 0
 | |
 4 5
 SORT TBSCAN
 (17) (23)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 589

 275.089 0.022021
 11 0
 | |
 4 5
 SHIP SORT
 (18) (24)
 275.086 0.0189106
 11 0
 /------+-----\ |
 100000 8e+06 5
 NICKNM: DB2 NICKNM: DB2 SHIP
 SUPPLIER PARTSUPP (25)
 0.0160508
 0
 /------+-----\
 5
25
 NICKNM: ORA NICKNM:
ORA
 REGION
NATION

1) RETURN: (Return Result)
Cumulative Total Cost: 712543
Cumulative CPU Cost: 7.99833e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712268
Cumulative Re-CPU Cost: 7.99827e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 712543
Estimated Bufferpool Buffers: 1
Remote communication cost:26483.8

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
STMTHEAP: (Statement heap size)

8192

Input Streams:

27) From Operator #2

590 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)
+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

2) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 712543
Cumulative CPU Cost: 7.99833e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712268
Cumulative Re-CPU Cost: 7.99827e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 712543
Estimated Bufferpool Buffers: 1
Remote communication cost:26483.8

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Input Streams:

24) From Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

26) From Operator #31

Estimated number of rows: 1
Number of columns: 0

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 591

Subquery predicate ID: Not Applicable

Output Streams:

27) To Operator #1

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q12.S_ACCTBAL(D)+Q12.N_NAME(A)+Q12.S_NAME(A)
+Q12.P_PARTKEY(A)+Q12.S_COMMENT+Q12.S_PHONE
+Q12.S_ADDRESS+Q12.P_MFGR

3) TBSCAN: (Table Scan)
Cumulative Total Cost: 712543
Cumulative CPU Cost: 7.99832e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712268
Cumulative Re-CPU Cost: 7.99827e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 712543
Estimated Bufferpool Buffers: 0
Remote communication cost:26477.6

Arguments:

JN INPUT: (Join input leg)

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

23) From Operator #4

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

592 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

Output Streams:

24) To Operator #2

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

4) SORT : (Sort)
Cumulative Total Cost: 712543
Cumulative CPU Cost: 7.99831e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712268
Cumulative Re-CPU Cost: 7.99827e+09
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 712543
Estimated Bufferpool Buffers: 31791.2
Remote communication cost:26477.6

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

1
ROWWIDTH: (Estimated width of rows)

204
SORTKEY : (Sort Key column)

1: Q10.S_ACCTBAL(D)
SORTKEY : (Sort Key column)

2: Q8.N_NAME(A)
SORTKEY : (Sort Key column)

3: Q10.S_NAME(A)
SORTKEY : (Sort Key column)

4: Q11.P_PARTKEY(A)
TEMPSIZE: (Temporary Table Page Size)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 593

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

22) From Operator #5

Estimated number of rows: 0.41902
Number of columns: 11
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

Output Streams:

23) To Operator #3

Estimated number of rows: 0.41902
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

+Q10.S_ACCTBAL(D)+Q8.N_NAME(A)+Q10.S_NAME(A)
+Q11.P_PARTKEY(A)+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q11.P_MFGR

5) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 712543
Cumulative CPU Cost: 7.99831e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712268
Cumulative Re-CPU Cost: 7.99827e+09
Cumulative Re-I/O Cost: 31789.2
Cumulative First Row Cost: 712543
Estimated Bufferpool Buffers: 31791.2
Remote communication cost:26477.6

Arguments:

EARLYOUT: (Early Out flag)

594 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE

Predicates:

4) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q10.S_NATIONKEY = Q8.N_NATIONKEY)

Input Streams:

19) From Operator #6

Estimated number of rows: 0.41902
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q10.S_COMMENT
+Q10.S_PHONE+Q10.S_ADDRESS+Q10.S_NAME
+Q10.S_ACCTBAL+Q10.S_NATIONKEY+Q11.P_MFGR
+Q11.P_PARTKEY

21) From Operator #29

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

Output Streams:

22) To Operator #4

Estimated number of rows: 0.41902

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 595

Number of columns: 11
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q8.N_NAME+Q9.PS_SUPPLYCOST
+Q10.S_COMMENT+Q10.S_PHONE+Q10.S_ADDRESS
+Q10.S_NAME+Q10.S_ACCTBAL+Q10.S_NATIONKEY
+Q11.P_MFGR+Q11.P_PARTKEY

6) NLJOIN: (Nested Loop Join)
Cumulative Total Cost: 712543
Cumulative CPU Cost: 7.99829e+09
Cumulative I/O Cost: 31800.2
Cumulative Re-Total Cost: 712268
Cumulative Re-CPU Cost: 7.99826e+09
Cumulative Re-I/O Cost: 31789.2
Cumulative First Row Cost: 712543
Estimated Bufferpool Buffers: 31790.2
Remote communication cost:26471.4

Arguments:

EARLYOUT: (Early Out flag)

NONE
FETCHMAX: (Override for FETCH MAXPAGES)

IGNORE
ISCANMAX: (Override for ISCAN MAXPAGES)

IGNORE
JN INPUT: (Join input leg)

OUTER

Predicates:

2) Predicate used in Join

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

Input Streams:

4) From Operator #7

596 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Estimated number of rows: 36042.4
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

18) From Operator #13

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

Output Streams:

19) To Operator #5

Estimated number of rows: 0.41902
Number of columns: 10
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0+Q9.PS_SUPPLYCOST+Q10.S_COMMENT
+Q10.S_PHONE+Q10.S_ADDRESS+Q10.S_NAME
+Q10.S_ACCTBAL+Q10.S_NATIONKEY+Q11.P_MFGR
+Q11.P_PARTKEY

7) SHIP : (Ship)
Cumulative Total Cost: 708711
Cumulative CPU Cost: 5.90815e+08
Cumulative I/O Cost: 31789.2
Cumulative Re-Total Cost: 708711
Cumulative Re-CPU Cost: 5.90815e+08
Cumulative Re-I/O Cost: 31789.2
Cumulative First Row Cost: 708711
Estimated Bufferpool Buffers: 31790.2
Remote communication cost:26449.2

Arguments:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 597

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

OUTER
RMTQTXT : (Remote statement)

SELECT A0."P_PARTKEY", A0."P_MFGR", A2."S_NATIONKEY", A2."S_ACCTBAL",
A2."S_NAME", A2."S_ADDRESS", A2."S_PHONE", A2."S_COMMENT", A1."PS_SUPPLYCOST"
FROM "TPCD"."PART" A0, "TPCD"."PARTSUPP" A1, "TPCD"."SUPPLIER" A2 WHERE
(A0."P_SIZE" = 15) AND (A0."P_TYPE" LIKE '%BRASS') AND (A0."P_PARTKEY" =
A1."PS_PARTKEY") AND (A2."S_SUPPKEY" = A1."PS_SUPPKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

1) From Object DB2.PART

Estimated number of rows: 2e+06
Number of columns: 5
Subquery predicate ID: Not Applicable

Column Names:

+Q11.RID+Q11.P_MFGR+Q11.P_TYPE+Q11.P_SIZE
+Q11.P_PARTKEY

2) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q9.RID+Q9.PS_SUPPLYCOST+Q9.PS_SUPPKEY
+Q9.PS_PARTKEY

3) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 8
Subquery predicate ID: Not Applicable

Column Names:

598 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

+Q10.RID+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q10.S_SUPPKEY

Output Streams:

4) To Operator #6

Estimated number of rows: 36042.4
Number of columns: 9
Subquery predicate ID: Not Applicable

Column Names:

+Q9.PS_SUPPLYCOST+Q10.S_COMMENT+Q10.S_PHONE
+Q10.S_ADDRESS+Q10.S_NAME+Q10.S_ACCTBAL
+Q10.S_NATIONKEY+Q11.P_MFGR+Q11.P_PARTKEY

13) FILTER: (Filter)
Cumulative Total Cost: 275.117
Cumulative CPU Cost: 242920
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.117
Cumulative Re-CPU Cost: 242920
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.117
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

2) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 1.16257e-05

Predicate Text:

(Q9.PS_SUPPLYCOST = Q6.$C0)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 599

Input Streams:

17) From Operator #14

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

Output Streams:

18) To Operator #6

Estimated number of rows: 1.16257e-05
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

14) GRPBY : (Group By)
Cumulative Total Cost: 275.116
Cumulative CPU Cost: 241585
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.116
Cumulative Re-CPU Cost: 241585
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.116
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

AGGMODE : (Aggregration Mode)

COMPLETE
GROUPBYC: (Group By columns)

FALSE
GROUPBYN: (Number of Group By columns)

0
ONEFETCH: (One Fetch flag)

FALSE

Input Streams:

600 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

16) From Operator #15

Estimated number of rows: 0.8
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

Output Streams:

17) To Operator #13

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q6.$C0

15) MSJOIN: (Merge Scan Join)
Cumulative Total Cost: 275.116
Cumulative CPU Cost: 241135
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 275.116
Cumulative Re-CPU Cost: 241135
Cumulative Re-I/O Cost: 11
Cumulative First Row Cost: 275.116
Estimated Bufferpool Buffers: 0
Remote communication cost:22.2188

Arguments:

EARLYOUT: (Early Out flag)

NONE
INNERCOL: (Inner Order Columns)

1: Q2.N_NATIONKEY(A)
OUTERCOL: (Outer Order columns)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096

Predicates:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 601

11) Predicate used in Join
Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

Input Streams:

9) From Operator #16

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

15) From Operator #22

Estimated number of rows: 0.2
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

16) To Operator #14

Estimated number of rows: 0.8
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q5.PS_SUPPLYCOST

16) TBSCAN: (Table Scan)
Cumulative Total Cost: 275.092
Cumulative CPU Cost: 191030

602 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0504
Cumulative Re-CPU Cost: 104891
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 275.09
Estimated Bufferpool Buffers: 0
Remote communication cost:10.8594

Arguments:

JN INPUT: (Join input leg)

OUTER
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

8) From Operator #17

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

Output Streams:

9) To Operator #15

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

17) SORT : (Sort)
Cumulative Total Cost: 275.089
Cumulative CPU Cost: 185333
Cumulative I/O Cost: 11

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 603

Cumulative Re-Total Cost: 25.0476
Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 275.089
Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

4
ROWWIDTH: (Estimated width of rows)

16
SORTKEY : (Sort Key column)

1: Q3.S_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

7) From Operator #18

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

Output Streams:

8) To Operator #16

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY(A)+Q4.PS_SUPPLYCOST

18) SHIP : (Ship)

604 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative Total Cost: 275.086
Cumulative CPU Cost: 180037
Cumulative I/O Cost: 11
Cumulative Re-Total Cost: 25.0476
Cumulative Re-CPU Cost: 99194
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 125.044
Estimated Bufferpool Buffers: 50012
Remote communication cost:10.8594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A0."PS_SUPPLYCOST", A1."S_NATIONKEY" FROM "TPCD"."PARTSUPP"
A0, "TPCD"."SUPPLIER" A1 WHERE (:H0 = A0."PS_PARTKEY") AND (A1."S_SUPPKEY" =
A0."PS_SUPPKEY") FOR READ ONLY

SRCSEVER: (Source (ship from) server)
DB2SERV

STREAM : (Remote stream)
FALSE

Input Streams:

5) From Object DB2.PARTSUPP

Estimated number of rows: 8e+06
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q4.RID+Q4.PS_SUPPLYCOST+Q4.PS_SUPPKEY
+Q4.PS_PARTKEY

6) From Object DB2.SUPPLIER

Estimated number of rows: 100000
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q3.RID+Q3.S_NATIONKEY+Q3.S_SUPPKEY

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 605

Output Streams:

7) To Operator #17

Estimated number of rows: 4
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q3.S_NATIONKEY+Q4.PS_SUPPLYCOST

22) FILTER: (Filter)
Cumulative Total Cost: 0.022021
Cumulative CPU Cost: 45856.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00924657
Cumulative Re-CPU Cost: 19255
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0196007
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

JN INPUT: (Join input leg)

INNER

Predicates:

11) Residual Predicate

Relational Operator: Equal (=)
Subquery Input Required: No
Filter Factor: 0.04

Predicate Text:

(Q3.S_NATIONKEY = Q2.N_NATIONKEY)

Input Streams:

14) From Operator #23

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

606 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q2.N_NATIONKEY(A)

Output Streams:

15) To Operator #15

Estimated number of rows: 0.2
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

23) TBSCAN: (Table Scan)
Cumulative Total Cost: 0.022021
Cumulative CPU Cost: 45856.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00924657
Cumulative Re-CPU Cost: 19255
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0196007
Estimated Bufferpool Buffers: 0
Remote communication cost:11.3594

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
SCANDIR : (Scan Direction)

FORWARD

Input Streams:

13) From Operator #24

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 607

Output Streams:

14) To Operator #22

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

24) SORT : (Sort)
Cumulative Total Cost: 0.0189106
Cumulative CPU Cost: 39379.4
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00613621
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0189106
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

DUPLWARN: (Duplicates Warning flag)

FALSE
NUMROWS : (Estimated number of rows)

5
ROWWIDTH: (Estimated width of rows)

8
SORTKEY : (Sort Key column)

1: Q2.N_NATIONKEY(A)
TEMPSIZE: (Temporary Table Page Size)

4096
UNIQUE : (Uniqueness required flag)

FALSE

Input Streams:

12) From Operator #25

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

608 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q2.N_NATIONKEY

Output Streams:

13) To Operator #23

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY(A)

25) SHIP : (Ship)
Cumulative Total Cost: 0.0160508
Cumulative CPU Cost: 33424
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00613621
Cumulative Re-CPU Cost: 12778
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00919759
Estimated Bufferpool Buffers: 2
Remote communication cost:11.3594

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
RMTQTXT : (Remote statement)

SELECT A1."N_NATIONKEY" FROM "IITEST"."REGION" A0, "IITEST"."NATION"
A1 WHERE (A0."R_NAME" = 'EUROPE ') AND (A1."N_REGIONKEY" =
A0."R_REGIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

10) From Object ORA.REGION

Estimated number of rows: 5

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 609

Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.RID+Q1.R_NAME+Q1.R_REGIONKEY

11) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.N_REGIONKEY+Q2.N_NATIONKEY

Output Streams:

12) To Operator #24

Estimated number of rows: 5
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_NATIONKEY

29) SHIP : (Ship)
Cumulative Total Cost: 0.00605841
Cumulative CPU Cost: 12616
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00399012
Cumulative Re-CPU Cost: 8309
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00498321
Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

610 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

INNER
RMTQTXT : (Remote statement)

SELECT A0."N_NAME" FROM "IITEST"."NATION" A0 WHERE (:H0 =
A0."N_NATIONKEY")

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

20) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q8.RID+Q8.N_NAME+Q8.N_NATIONKEY

Output Streams:

21) To Operator #5

Estimated number of rows: 1
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q8.N_NAME

31) SHIP : (Ship)
Cumulative Total Cost: 0.00418893
Cumulative CPU Cost: 8723
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00214609
Cumulative Re-CPU Cost: 4469
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.00313918
Estimated Bufferpool Buffers: 1
Remote communication cost:9.35938

Arguments:

CSERQY : (Remote common subexpression)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 611

FALSE
DSTSEVER: (Destination (ship to) server)

- (NULL).
JN INPUT: (Join input leg)

INNER
RMTQTXT : (Remote statement)

SELECT '1' FROM "IITEST"."REGION" A0 WHERE (A0."R_NAME" = 'EUROPE
')

SRCSEVER: (Source (ship from) server)
ORASERV

STREAM : (Remote stream)
FALSE

Input Streams:

25) From Object ORA.REGION

Estimated number of rows: 5
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q7.RID+Q7.R_NAME

Output Streams:

26) To Operator #2

Estimated number of rows: 1
Number of columns: 0
Subquery predicate ID: Not Applicable

Objects Used in Access Plan:

Schema: DB2
Name: PART
Type: Nickname

Time of creation: 2004-06-10-08.38.47.722759
Last statistics update:
Number of columns: 9
Number of rows: 2000000
Width of rows: 70
Number of buffer pool pages: 76238
Distinct row values: No
Tablespace name:

612 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: DB2
Name: PARTSUPP
Type: Nickname

Time of creation: 2004-06-10-08.38.47.872025
Last statistics update:
Number of columns: 5
Number of rows: 8000000
Width of rows: 28
Number of buffer pool pages: 319290
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: DB2
Name: SUPPLIER
Type: Nickname

Time of creation: 2004-06-10-08.38.47.795922
Last statistics update:
Number of columns: 7
Number of rows: 100000
Width of rows: 157
Number of buffer pool pages: 4093
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: NATION
Type: Nickname

Time of creation: 2004-06-10-08.38.38.710626
Last statistics update: 2004-06-10-19.56.42.522824
Number of columns: 4
Number of rows: 25
Width of rows: 57
Number of buffer pool pages: 2

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 613

Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Schema: ORA
Name: REGION
Type: Nickname

Time of creation: 2004-06-10-08.38.38.810764
Last statistics update: 2004-06-10-19.56.42.820988
Number of columns: 3
Number of rows: 5
Width of rows: 53
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Access plan description
The access plan graph for our SQL query has been highlighted in Example B-13
on page 586 under “Access Plan”.

The key difference between this access plan graph and the one with
DB2_MAXIMAL_PUSHDOWN = ‘N’ in Example B-12 on page 554 is that a
3-way join of PART, PARTSUPP, and SUPPLIER has now been pushed down to
DB2 (see SHIP operator 7), thereby eliminating a need for a nested loop join.
However, the estimated total cost is now 712543 timerons, which is higher than
before.

Analysis

Important: Bearing in mind that the EXPLAIN output information is DB2
optimizer estimates only and does not necessarily reflect actual runtime
metrics, you should be cautious in drawing conclusions about relative costs
associated with each operator, as well as relying on the number of estimated
rows retrieved or returned by the various operators. EXPLAIN output
information is best used in conjunction with runtime metrics gathered through
monitoring.

614 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Even though additional pushdown has occurred for our SQL query with
DB2_MAXIMAL_PUSHDOWN = ‘Y’, the optimizer has estimated the costs to be
higher.

We recommend that you choose the default DB2_MAXIMAL_PUSHDOWN = ‘N’
setting for all queries, and only consider changing this default if performance is
unacceptable and a change in the setting delivers superior performance.

SQL INSERT/UPDATE/DELETE
In this scenario, we merely want to show that a SHIP operator may or may not
appear in the db2exfmt output for inserts/updates/deletes, depending upon the
syntax used.

Example B-14, Example B-15 on page 624, and Example B-16 on page 627
show the complete db2exfmt output for the insert, update, and delete DML
statements that reference remote nicknames. The SQL statement issued in each
of these examples has been highlighted under “Original statement” in the
db2exfmt output.

Example: B-14 db2exfmt output for SQL INSERT

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID

Attention: The DB2_MAXIMAL_PUSHDOWN can be set using the SET
SERVER OPTION statement so that its impact can be limited to a particular
query. Changing this default setting in the server definition can negatively
impact other queries that are better served with the default setting.

Note: There is no indication of the server option
(DB2_MAXIMAL_PUSHDOWN set to ‘Y’ or ‘N’) in the db2exfmt output.

The server options are stored in the DB2 system catalog table
SYSIBM.SYSSERVEROPTIONS or view SYSCAT.SERVEROPTIONS.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 615

SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-28-14.53.19.283679
EXPLAIN_REQUESTER: DB2I32

Database Context:

Parallelism: None
CPU Speed: 4.802167e-07
Comm Speed: 100
Buffer Pool size: 75000
Sort Heap size: 20000
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Insert
Updatable: Not Applicable
Deletable: Not Applicable
Query Degree: 1

Original Statement:

insert into ora.nation
 select *
 from tpcd.nation

Optimized Statement:

INSERT INTO ORA.NATION AS Q3
 SELECT Q1.N_COMMENT, Q1.N_NAME, DECIMAL(Q1.N_NATIONKEY),
 DECIMAL(Q1.N_REGIONKEY)
 FROM TPCD.NATION AS Q1

Access Plan:

616 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Total Cost: 50.0434
Query Degree:1

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 25
 SHIP
 (3)
 25.0372
 1
 |
 25
 FETCH
 (4)
 25.0316
 1
 /----+---\
 25 25
 IXSCAN TABLE: TPCD
 (5) NATION
 0.00330581
 0
 |
 25
 INDEX: TPCD
 N_REGKEYNATKEYNA

1) RETURN: (Return Result)
Cumulative Total Cost: 50.0434
Cumulative CPU Cost: 90430
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 25.0354
Cumulative Re-CPU Cost: 73725
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 50.0434
Estimated Bufferpool Buffers: 3
Remote communication cost:6.144e+06

Arguments:

BLDLEVEL: (Build level)

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 617

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
RMTQTXT : (Remote statement)

INSERT INTO "IITEST"."NATION" ("N_REGIONKEY", "N_NATIONKEY",
"N_NAME", "N_COMMENT") VALUES (:H0 , :H1 , :H2 , :H3)

RMTSEVER: (Remote server)
ORASERV

STMTHEAP: (Statement heap size)
8192

Input Streams:

5) From Operator #3

Estimated number of rows: 25
Number of columns: 0
Subquery predicate ID: Not Applicable

3) SHIP : (Ship)
Cumulative Total Cost: 25.0372
Cumulative CPU Cost: 77430
Cumulative I/O Cost: 1
Cumulative Re-Total Cost: 0.0291612
Cumulative Re-CPU Cost: 60725
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.0094
Estimated Bufferpool Buffers: 2

Arguments:

CSERQY : (Remote common subexpression)

FALSE
DSTSEVER: (Destination (ship to) server)

ORASERV
SRCSEVER: (Source (ship from) server)

- (NULL).
STREAM : (Remote stream)

FALSE

Input Streams:

4) From Operator #4

Estimated number of rows: 25
Number of columns: 4
Subquery predicate ID: Not Applicable

618 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Column Names:

+Q2.$C3+Q2.$C2+Q2.N_COMMENT+Q2.N_NAME

Output Streams:

5) To Operator #1

Estimated number of rows: 25
Number of columns: 0
Subquery predicate ID: Not Applicable

4) FETCH : (Fetch)
Cumulative Total Cost: 25.0316
Cumulative CPU Cost: 65860
Cumulative I/O Cost: 1
Cumulative Re-Total Cost: 0.0236051
Cumulative Re-CPU Cost: 49155
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 25.0092
Estimated Bufferpool Buffers: 2

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NONE
TABLOCK : (Table Lock intent)

SHARE
TBISOLVL: (Table access Isolation Level)

CURSOR STABILITY

Input Streams:

2) From Operator #5

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 619

+Q1.N_REGIONKEY(A)+Q1.N_NATIONKEY(A)
+Q1.N_NAME(A)

3) From Object TPCD.NATION

Estimated number of rows: 25
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q1.N_COMMENT

Output Streams:

4) To Operator #3

Estimated number of rows: 25
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q2.$C3+Q2.$C2+Q2.N_COMMENT+Q2.N_NAME

5) IXSCAN: (Index Scan)
Cumulative Total Cost: 0.00330581
Cumulative CPU Cost: 6884
Cumulative I/O Cost: 0
Cumulative Re-Total Cost: 0.00152661
Cumulative Re-CPU Cost: 3179
Cumulative Re-I/O Cost: 0
Cumulative First Row Cost: 0.0025197
Estimated Bufferpool Buffers: 1

Arguments:

MAXPAGES: (Maximum pages for prefetch)

ALL
PREFETCH: (Type of Prefetch)

NONE
ROWLOCK : (Row Lock intent)

NONE
SCANDIR : (Scan Direction)

FORWARD
TABLOCK : (Table Lock intent)

SHARE

620 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Input Streams:

1) From Object TPCD.N_REGKEYNATKEYNAM

Estimated number of rows: 25
Number of columns: 4
Subquery predicate ID: Not Applicable

Column Names:

+Q1.N_REGIONKEY(A)+Q1.N_NATIONKEY(A)
+Q1.N_NAME(A)+Q1.RID

Output Streams:

2) To Operator #4

Estimated number of rows: 25
Number of columns: 3
Subquery predicate ID: Not Applicable

Column Names:

+Q1.N_REGIONKEY(A)+Q1.N_NATIONKEY(A)
+Q1.N_NAME(A)

Objects Used in Access Plan:

Schema: ORA
Name: NATION
Type: Nickname (reference only)

Schema: TPCD
Name: N_REGKEYNATKEYNAM
Type: Index

Time of creation: 2004-06-09-04.46.41.746356
Last statistics update: 2004-06-13-00.38.53.238586
Number of columns: 3
Number of rows: 25
Width of rows: -1
Number of buffer pool pages: 2
Distinct row values: Yes
Tablespace name: INDEX_TS
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 621

Source for statistics: Single Node
Prefetch page count: 96
Container extent page count: 32
Index clustering statistic: 100.000000
Index leaf pages: 1
Index tree levels: 1
Index full key cardinality: 25
Index first key cardinality: 5
Index first 2 keys cardinality: 25
Index first 3 keys cardinality: 25
Index first 4 keys cardinality: -1
Index sequential pages: 0
Index page density: 0
Index avg sequential pages: 0
Index avg gap between sequences:0
Index avg random pages: 1
Fetch avg sequential pages: -1
Fetch avg gap between sequences:-1
Fetch avg random pages: -1
Index RID count: 25
Index deleted RID count: 0
Index empty leaf pages: 0
Base Table Schema: TPCD
Base Table Name: NATION
Columns in index:

N_REGIONKEY
N_NATIONKEY
N_NAME

Schema: TPCD
Name: NATION
Type: Table

Time of creation: 2004-06-09-04.46.40.636983
Last statistics update: 2004-06-13-00.38.53.238586
Number of columns: 4
Number of rows: 25
Width of rows: 116
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name: DATA_TS
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 96
Container extent page count: 32
Table overflow record count: 0
Table Active Blocks: -1

622 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Access plan description
Since the format of the insert SQL statement in this example is “insert via
subselect” (insert into T1, select from T2), a SHIP operator is present in the
db2exfmt access plan graph. Had the statement been in the form “insert via
values” (insert into T1 values(...)), the SHIP operator would not have been
present. Also of note, the remote query text (RMTQTXT) for insert, update, and
delete statements referencing nicknames show up in the RETURN operator
instead of the SHIP operator, as with select DML statements.

The access plan graph for our SQL query has been highlighted in Example B-14
on page 615 under “Access Plan”.

Our SQL query is an insert into the NATION nickname by selecting rows from the
local NATION table—an insert with subselect.

Reading this graph bottom up reveals the following:

� An index scan (IXSXAN operator 5) is performed on the
N_REGKEYNATKEYNA index (cardinality of 25 rows according to the DB2 II
catalog), which retrieves four columns (N_REGIONKEY, N_NATIONKEY,
N_NAME, and the RID) and passes them to the FETCH operator 4, which
accesses the N_COMMENT column from the NATION table (same cardinality
of 25 as in the index).

� The FETCH operator 4 estimates that 25 rows will be passed to the SHIP
operator 3 with four columns of data.

� The SHIP operator 3 does not have the RMTQTXT field showing the SQL
fragment executed at the remote data source in the Arguments section, as in
the case of SQL SELECTs. Instead, the RMTQTXT field is part of the
Arguments section of the RETURN operator 1. The RETURN operator 1 is
notified of the estimate of 25 rows being inserted.

� The total estimated cost of the query is 50.0434 timerons, and there is no
parallelism involved (Query Degree: 1 in the Access Plan).

Attention: The SHIP operator may not appear at all in the db2exfmt output
when a simple SQL statement such as INSERT INTO T1 VALUES
(1,’NAGRAJ’, ‘ITSO PROJECT LEADER’) is used.

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 623

Analysis

The key point to be made here is that the RMTQTXT field is part of the
Arguments section of the RETURN operator, and that a SHIP operator may not
appear in the db2exfmt output (this example is not shown here).

Example B-15 and Example B-16 on page 627 show SQL UPDATE and DELETE
statements that reference only the remote data source, and therefore do not
contain a SHIP operator in the db2exfmt output. Note that the RMTQTXT field
showing the SQL fragment executed at the remote data source is listed in the
Arguments section of the RETURN operator 1.

Example: B-15 db2exfmt output for SQL UPDATE

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-28-09.37.23.334567
EXPLAIN_REQUESTER: DB2I32

Database Context:

Parallelism: Intra-Partition Parallelism
CPU Speed: 4.841528e-07
Comm Speed: 100
Buffer Pool size: 1000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10

Important: Bearing in mind that the EXPLAIN output information is DB2
optimizer estimates only and does not necessarily reflect actual runtime
metrics, you should be cautious in drawing conclusions about relative costs
associated with each operator, as well as relying on the number of estimated
rows retrieved or returned by the various operators. EXPLAIN output
information is best used in conjunction with runtime metrics gathered through
monitoring.

624 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Searched Update
Updatable: Not Applicable
Deletable: Not Applicable
Query Degree: -1

Original Statement:

update ora.nation set n_comment = 'updated DC'
where n_nationkey=50

Optimized Statement:

UPDATE ORA.NATION AS Q1 SET (Q1.N_COMMENT) =
 SELECT 'updated DC'
 FROM ORA.NATION AS Q2
 WHERE (Q2.N_NATIONKEY = +0000000050.)

Access Plan:

Total Cost: 50.0189
Query Degree:0

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 25
 NICKNM: ORA
 NATION

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 625

1) RETURN: (Return Result)
Cumulative Total Cost: 50.0189
Cumulative CPU Cost: 39090
Cumulative I/O Cost: 2
Cumulative Re-Total Cost: 25.012
Cumulative Re-CPU Cost: 24785
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 50.0189
Estimated Bufferpool Buffers: 3
Remote communication cost:6.144e+06

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
RMTQTXT : (Remote statement)

UPDATE "IITEST"."NATION" A0 SET "N_COMMENT" = 'updated DC' WHERE
(A0."N_NATIONKEY" = 0000000050.)

RMTSEVER: (Remote server)
ORASERV

STMTHEAP: (Statement heap size)
8192

Input Streams:

1) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 1
Subquery predicate ID: Not Applicable

Column Names:

+Q2.N_COMMENT

Objects Used in Access Plan:

Schema: ORA
Name: NATION
Type: Nickname

Time of creation: 2004-06-10-08.38.38.710626
Last statistics update: 2004-06-10-19.56.42.522824
Number of columns: 4

626 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Number of rows: 25
Width of rows: 107
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name:
Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

Example: B-16 db2exfmt output for SQL DELETE

DB2 Universal Database Version 8.1, 5622-044 (c) Copyright IBM Corp. 1991, 2002
Licensed Material - Program Property of IBM
IBM DATABASE 2 Explain Table Format Tool

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 08.02.0
SOURCE_NAME: SQLC2E05
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2004-06-28-09.34.28.709947
EXPLAIN_REQUESTER: DB2I32

Database Context:

Parallelism: Intra-Partition Parallelism
CPU Speed: 4.841528e-07
Comm Speed: 100
Buffer Pool size: 1000
Sort Heap size: 256
Database Heap size: 1200
Lock List size: 100
Maximum Lock List: 10
Average Applications: 1
Locks Available: 1020

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 627

Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Searched Delete
Updatable: Not Applicable
Deletable: Not Applicable
Query Degree: -1

Original Statement:

delete
from ora.nation
where n_nationkey=50

Optimized Statement:

DELETE
FROM ORA.NATION AS Q1
WHERE RID IN
 (SELECT RID
 FROM ORA.NATION AS Q2
 WHERE (Q2.N_NATIONKEY = +0000000050.))

Access Plan:

Total Cost: 25.0124
Query Degree:0

 Rows
 RETURN
 (1)
 Cost
 I/O
 |
 25
 NICKNM: ORA
 NATION

1) RETURN: (Return Result)
Cumulative Total Cost: 25.0124
Cumulative CPU Cost: 25542

628 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Cumulative I/O Cost: 1
Cumulative Re-Total Cost: 25.0103
Cumulative Re-CPU Cost: 21309
Cumulative Re-I/O Cost: 1
Cumulative First Row Cost: 25.0124
Estimated Bufferpool Buffers: 2
Remote communication cost:6.144e+06

Arguments:

BLDLEVEL: (Build level)

DB2 v8.1.1.64 : s040509
ENVVAR : (Environment Variable)

DB2_EXTENDED_OPTIMIZATION = ON
RMTQTXT : (Remote statement)

DELETE FROM "IITEST"."NATION" A0 WHERE (A0."N_NATIONKEY" =
0000000050.)

RMTSEVER: (Remote server)
ORASERV

STMTHEAP: (Statement heap size)
8192

Input Streams:

1) From Object ORA.NATION

Estimated number of rows: 25
Number of columns: 2
Subquery predicate ID: Not Applicable

Column Names:

+Q2.RID+Q2.N_NATIONKEY

Objects Used in Access Plan:

Schema: ORA
Name: NATION
Type: Nickname

Time of creation: 2004-06-10-08.38.38.710626
Last statistics update: 2004-06-10-19.56.42.522824
Number of columns: 4
Number of rows: 25
Width of rows: 34
Number of buffer pool pages: 2
Distinct row values: No
Tablespace name:

 Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator 629

Tablespace overhead: 24.100000
Tablespace transfer rate: 0.900000
Source for statistics: Single Node
Prefetch page count: 32
Container extent page count: 32

630 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 633. Note that some of the documents referenced here may be available
in softcopy only.

� DB2 UDB ESE V8 non-DPF Performance Guide for High Performance OLTP
and BI, SG24-6432

� DB2 UDB’s High-Function Business Intelligence in e-business, SG24-6546

� Patterns: Information Aggregation and Data Integration with DB2 Information
Integrator, SG24-7101

� WebSphere Portal and DB2 Information Integrator, SG24-6433

� Data Federation with IBM DB2 Information Integrator, SG24-7052

� Fundamentals of Grid Computing, REDP-3613-00

� A Practical Guide to DB2 Data Replication V8, SG24-6828

� Getting Started in Integrating Your Information, SG24-6892

� XML for DB2 Information Integration, SG24-6994

� IBM Life Sciences Solutions: Turning Data into Discovery with DiscoveyLink,
SG24-6290

� IBM Informix: Integration Through Data Federation, SG24-7032

� Moving Data Across the DB2 Family, SG24-6905

Other publications
These publications are also relevant as further information sources:

� IBM Systems Journal Vol. 41, No. 4, 2002, Information Integration,
G321-01473

� IBM DB2 Information Integrator Developer’s Guide Version 8.2, SC18-9174

© Copyright IBM Corp. 2004. All rights reserved. 631

� IBM DB2 Information Integrator Federated Systems Guide Version 8.2,
SC18-7364-01

� IBM DB2 Information Integrator Installation Guide for Linux, UNIX, and
Windows Version 8.2, GC18-7036-01

� IBM DB2 Information Integrator Wrapper Developer’s Guide Version 8.2,
SC18-9174

� IBM DB2 Information Integrator Migration Guide Version 8.2, SC18-7360

� IBM DB2 Information Integrator Application Developer’s Guide Version 8.2,
SC18-7359-01

� IBM DB2 UDB ESE non-DPF Performance Guide for High Performance OLTP
and BI, SG24-6432

� IBM DB2 Universal Database Administration Guide: Performance Version 8,
SC09-4821-01

� IBM DB2 Universal Database Administration Guide: Planning Version 8.2,
SC09-4822-01

� IBM DB2 Universal Database Command Reference, Version 8.2,
SC09-4828-01

� IBM DB2 Universal Database Message Reference Volume 1 Version 8.2,
GC09-4840-01

� IBM DB2 Universal Database Replication Guide and Reference Version 8.2,
Release 1, SC27-1121-02

� IBM DB2 Universal Database SQL Reference Volume 1 Version 8.2,
SC09-4844-01

� IBM DB2 Universal Database SQL Reference Volume 2 Version 8.2,
SC09-4845-01

� IBM DB2 Universal Database System Monitor Guide and Reference Version
8.2, SC09-4847-01

� IBM DB2 Information Integrator Installation Guide for Linux, UNIX, and
Windows, GC18-7036

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM DB2 Information Integrator Data Source Configuration Guide Version 8.2,
available as softcopy only from the Web site:

http://www.ibm.com/software/data/integration/solution

632 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

http://www.ibm.com/software/data/integration/solution

� IBM DB2 Information Integrator Release Notes Version 8.2, available as
softcopy only from the Web site:

http://www.ibm.com/software/data/integration/solution

� Information On Demand DB2 Magazine article by Holly Hayes and Nelson
Mattos, Quarter 3, 2003, Volume 8, Issue 3, available at:

http://www.db2mag.com/story/showArticle.jhtml?articleID=12803103

� Using the federated database technology of IBM DB2 Information Integrator,
white paper by Anjali Grover, Eileen Lin and Ioana Ursu, available from the
Web site:

http://www.ibm.com/software/data/pubs/papers/#iipapers

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 633

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.db2mag.com/story/showArticle.jhtml?articleID=12803103
http://www.ibm.com/software/data/integration/solution
http://www.ibm.com/software/data/pubs/papers/#iipapers

634 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Index

A
Access 452
Access Plan Graph 85
Access Plan graph 454
alerts 37, 439

B
bandwidth latency 58
best practices guidelines 40
best practices recommendations 40
buffer pool 49, 54, 84, 113
buffer pools 83
built-in functions 24

C
cache 12, 84
cache tables 25, 87–88, 436, 438
Capacity planning 378
capacity planning assumptions 378
capacity planning new applications 427
capacity planning procedure 379
Capacity planning procedure overview

Step 1 Establish environment 382
Step 3 Summarize monitored intervals informa-
tion 410
Step 5 Generate utilization report 415
Step 6 Estimate capacity for anticipated growth
424
Step2 Capture runtime metrics 386
Step4 Identify reporting interval 414

capacity planning procedure overview 381
capture ratio 380, 383, 396, 414–415
CARD 69, 72
cardinality 467
check constraints 89–90, 438
CLUSTERFACTOR 69, 72
CLUSTERRATIO 69, 72
COLCARD 69, 72
collating sequence 78
COLLATING_SEQUENCE 20, 46, 68, 79, 82, 95
COLLATING_SEQUENCE server option 46
collocated federated server 26, 28

© Copyright IBM Corp. 2004. All rights reserved.
COMM_RATE 20, 50, 68, 79, 467, 469
communication buffer 100
compensation 14
computational partition group 435, 468
CPG 29, 62, 64, 160, 468
CPU_RATIO 20, 50, 68, 79, 467, 469
Cube Views 90
CURRENT REFRESH AGE 88

D
Data consolidation or placement 6, 8
data federation 4–5, 11, 16
Data mappings 23
Data placement 60
data placement 25
Data type mappings 23
data type mappings 77
data type mismatch 77, 110
database manager configuration parameter

intra_parallel 75
max_querydegree 76
rqrioblk 99

Database System Monitor 164
db 439
db.fed_nicknames_op_status 439
db.fed_servers_op_status 439
DB2 Enterprise Server Edition 15
DB2 Health Center 125, 439
DB2 hypotheses hierarchy 117

DB2 resource constraints
Buffer pool constraints 132
Cache size constraints 134
Connection constraints 126
Locking constraints 130
Miscellaneous constraints 135
Sorting constraints 128

DB2 II server options 464
COMM_RATE 464
CPU_RATIO 464
DB2_MAXIMAL_PUSHDOWN 464
IO_RATIO 464
LOGIN_TIMEOUT 464
PACKET_SIZE 464

 635

PLAN_HINTS 464
PUSHDOWN 465
TIMEOUT 465
VARCHAR_NO_TRAILING_BLANKS 466

DB2 II V8.1 11, 14
components 15
data sources supported 15
overview 11

DB2 IICF 10
DB2 Information Integration

overview 6
products 9

DB2 Information Integrator (DB2 II) 10
DB2 Information Integrator Classic Federation for
z/OS (DB2 IICF) 10
DB2 optimizer 72, 83, 210
DB2_COMPPARTITIONGROUP 64
DB2_COMPPARTITIONGROUP registry variable
436
DB2_FENCED 49, 62, 65, 68, 74, 123, 160, 430,
434
DB2_MAXIMAL_PUSHDOWN 20, 49, 53, 68, 82,
111, 442, 463, 467, 554, 586
db2exfmt examples 463
db2exfmt output 458

Access Plan graph 453
Access Plan section 452
EXPLAIN INSTANCE section 449
Objects section 457
OPERATOR DETAILS section 455
SQL INSERT/UPDATE/DELETE 615
SQL STATEMENT section 450

db2exfmt output example
DB2_MAXIMAL_PUSHDOWN = ‘Y’ 554, 586
DPF environment with the FENCED = ‘N’ 516
DPF with FENCED = ’Y’ 534
INTRA_PARALLEL = YES (intra-partition en-
abled) 489
SQL INSERT/UPDATE/DELETE 615

db2exfmt output focus areas 463
db2exfmt overview 448
dedicated federated server 26, 28
Default DB2_FENCED wrapper option with DPF
339
default mapping types 24
DEGREE 75
determine new application workload 428
DFT_DEGREE 48, 68, 74, 160, 433, 468
dft_degree 75

DFT_MON_BUFPOOL 162
DFT_MON_LOCK 162, 164
DFT_MON_SORT 162
DFT_MON_STMT 163–164
DFT_MON_TABLE 163
DFT_MON_TIMESTAMP 163–164
DFT_MON_UOW 163
DFT_MTTB_TYPES 89
DFT_QUERYOPT 48, 68
DISABLE QUERY OPTIMIZATION 90
Distributed access 7, 9
DPF 62, 160, 378, 463, 468, 516, 534
dynamic cache 53
dynamic SQL 52

E
Efficient SQL queries 109
EII 7
enced mode procedure 431
enterprise information integration (EII) 7
estimate capacity for the new application 428
Estimate the CPU utilization 425
Estimate the memory requirements 426
Event Monitor 164
Exception monitoring 37, 39, 166
Execution flow of a federated query 50
EXPLAIN 441
EXPLAIN facility 442
EXPLAIN output operators 446

BTQ 446
DELETE 446
DTQ 447
EISCAN 447
FETCH 447
FILTER 447
GRPBY 447
HSJOIN 447
INSERT 447
IXAND 447
IXSCAN 447
LMTQ 447
LTQ 447
MBTQ 447
MDTQ 447
MSJOIN 447
NLJOIN 447
RETURN 447
RIDSCAN 447

636 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

RPD 448
SHIP 448
SORT 448
TBSCAN 448
TEMP 448
TQUEUE 448
UNION 448
UNIQUE 448
UPDATE 448

EXPLAIN tables 444
ADVISE_INDEX 445
ADVISE_WORKLOAD 445
EXPLAIN_ARGUMENTS 444
EXPLAIN_INSTANCE 444
EXPLAIN_OBJECTS 444
EXPLAIN_OPERATORS 444
EXPLAIN_PREDICATE 445
EXPLAIN_STATEMENTS 444
EXPLAIN_STREAM 445

Explain tables 444

F
FEDERATED 16, 18
federated database 12, 83
federated query basic flow 42
federated server 69
federated server related 152
federated server side performance 58
federated system 12, 18, 83

configuring a data source 19
federated test environment 167, 462
FEDERATED_TOOL 89
federation 9
FENCED 463, 516, 534
fenced mode 430
fenced mode operation 49
fenced mode procedure 63
fenced wrapper 431
FIRSTKEYCARD 69, 72
fmp 63
fmp process 431
FPAGES 69, 72
FULLKEYCARD 69, 72
Function mappings 21
function mappings 47
function template 112

G
get_stats 70
global catalog 16, 69–71, 73–74, 79, 110, 436
global catalog views 16
global optimization 24
grid computing 3

H
hash join 49, 83, 158, 467
hash joins 60
health indicators 439
Health Monitor 440
HIGH2KEY 69, 72
hypotheses 40
hypotheses validation 117, 122

I
IBMDEFAULTBP 84, 96
incompatible data types on join columns 239
index definitions 109, 467
index information 43, 48, 69, 71, 73, 78, 111,
155–156
index specification 71–74
index specifications 123
indexes 69, 73
information integration 4–6
informational constraints 89–91, 110, 438
Input streams 457
integration

Application connectivity 3
Build to integrate 3
Information integration 3
Process integration 3
User interaction 3

inter-partition parallelism 29, 49, 74, 160, 433–434,
464, 468
INTRA_PARALLEL 48, 68, 74, 91, 123, 160, 433,
463, 468, 516, 554
intra_parallel 91
intra-partition parallelism 48, 74–75, 160, 432, 464,
468
IO_RATIO 20, 50, 68, 79, 467, 469
IUD_APP_SVPT_ENFORCE 21
IXSCAN 447

J
join 18, 24, 60–61, 68

 Index 637

Joins 158, 463

L
look-aside capability 85
Lotus Extended Search 24
LOW2KEY 69, 72

M
MAX_QUERYDEGREE 48, 68, 74–75, 433
merge scan 467
merge scan join 83, 158
merge scans 60
missing or incorrect statistics/index information 170
missing or unavailable MQTs 210
model of different profiles of queries 427
MQT 24, 61, 82
MQT's 438
MQTs 25, 90, 436, 442, 452–453
MQTs/ASTs 85, 210

functionality 86

N
nested loop 467
nested loop join 60, 83, 123, 158
network 112
nicknames 16, 70, 72
NLEAF 69, 72
NLEVELS 69, 72
NNSTAT 69–71, 73, 78, 111, 152, 155, 436, 467
non relational wrappers 16
non-pushdownable predicates 156
NPAGES 72
NUMERIC_STRING 68, 82–83, 95
NUMERIC_STRING nickname column option 47

O
on demand 2

Automation 2
definition 2
Integration 2
Virtualization 2

Online/event monitoring 166
Online/realtime event monitoring 36
Operation Merging 46
Operation moment 46
Optimized statement 451
Optimized Statement section 85

Original statement 451
outer join 111
Output streams 457
OVERFLOW 69, 72
overheads 164

P
Parallelism 160
partitioned database 26, 62
passthru 22
Passthru privileges 17
PDA 79, 95
performance considerations 24
performance factors 57, 59
performance management 32–34

best practices 40
hypotheses 39
performance management cycle 34
performance objectives 33
proactive 32
reactive 32

performance objectives 33–34
Measurable 33
Quantifiable 33
Realistic 33
Reasonable 33

poorly tuned sort heap and buffer pools 206
post threshold sorts 91
Predicate translation 46
predicates

Index SARGable 94
private sorts 97
proactive approach 35
Problem determination methodology 37
problem resolution 40
PUSHDOWN 20, 68, 443, 467
Pushdown 156, 463, 467
pushdown 25, 45, 54, 60–61, 78–79, 110, 123
Pushdown Analysis 47
pushdown analysis 21, 25, 61, 78
pushdown factors 78
pushdown problems 272
PUSHDOWN server option 46
pushdownability 46, 467
pushdownable predicates 82, 156

Q
query fragment 52

638 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

Query Rewrite 430, 452
Query rewrite 46
query rewrite 24–25, 61, 112

Operation Merging 46
Operation moment 46
Predicate translation 46

R
Redbooks Web site 633

Contact us xx
referential constraints 89, 438
relational wrappers 16
remote data source related 161
remote query fragment 53
remote SQL fragments 45
replication 87, 437
request-reply-compensate protocol 45
RMTQTXT 53, 102, 455
Routine monitoring 35, 165
RQRIOBLK 51, 53, 61, 68, 101
RTRIM function 81
runstats 73

S
sar 380, 390, 396, 415
SET SERVER OPTION 21
shared sorts 48
SHEAPTHRES 54, 68, 83, 91, 99
sheapthres 92
SHEAPTHRES_SHR 68, 83, 91, 99
SHIP 49, 53, 82, 102
SHIP operator 455
Snapshot Monitor 162
snapshot monitor 439
Snapshot Monitor switches 162

Typical overheads 164
SORTHEAP 48, 54, 68, 83–84, 91–92, 96, 99, 113,
427
sorts

non-overflowed sort 92
non-piped sort 93
overflowed sort 92
piped sort 93

SQL Compiler 45
SQL compiler 451

Check Semantics 45
Parse Query 45
Pushdown Analysis 46

Remote SQL Generation 50
Rewrite Query 46

SQL dialect 50
SQL INSERT/UPDATE/DELETE 615
Statistics 43
statistics 48, 61, 69–70, 72–73, 78, 109, 111, 123,
436, 467
Statistics Update 69–71, 73, 78, 111, 152, 155,
436, 467
SYSCAT.COLOPTIONS 17
SYSCAT.COLUMNS 17
SYSCAT.FUNCMAPOPTIONS 17
SYSCAT.FUNCMAPPARMOPTIONS 17
SYSCAT.FUNCMAPPINGS 17, 21
SYSCAT.FUNCTIONS 17
SYSCAT.INDEXES 17
SYSCAT.INDEXOPTIONS 17
SYSCAT.KEYCOLUSE 17
SYSCAT.PASSTHRUAUTH 17
SYSCAT.ROUTINES 17
SYSCAT.SERVEROPTIONS 16
SYSCAT.SERVERS 16
SYSCAT.TABLES 17
SYSCAT.TABOPTIONS 17
SYSCAT.TYPEMAPPINGS 17
SYSCAT.WRAPOPTIONS 16
SYSCAT.WRAPPERS 16
SYSSTAT 72
SYSSTAT.COLUMNS 18
SYSSTAT.INDEXES 72
SYSSTAT.ROUTINES 18
SYSSTAT.TABLES 18, 72
SYSTAT.INDEXES 18

T
timeron 454
topologies 26
traffic 53, 59
trusted mode 430
typical problem determination methodology 38

U
UNIQUERULE 71
User Mapping 23
user mapping 22

 Index 639

V
VARCHAR 79–80, 83, 95, 466, 469
VARCHAR_NO_TRAILING_BLANKS 68, 80–83,
469
VARCHAR_NO_TRAILING_BLANKS server option
47
VARCHAR2 80–81, 466, 469
views 452
Visual Explain 443
vmstat 380, 391, 396

W
Wrapper options 20
wrappers 13, 42, 51, 63, 430

Communication with the data source 14
data modelling 14
Federated object registration 14
Services and operations 14

640 DB2 II: Performance Monitoring, Tuning and Capacity Planning Guide

DB2 II: Perform
ance M

onitoring,
Tuning and Capacity Planning Guide

®

SG24-7073-00 ISBN 0738490881

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 II: Performance
Monitoring, Tuning and
Capacity Planning Guide

DB2 Information
Integrator V8.2
performance drivers
and best practices

Performance
problem
determination
scenarios

Capacity planning

This IBM Redbook provides an overview of DB2 Information
Integrator V8.2 key performance drivers; best practices to
achieve optimal performance; and guidelines for monitoring a
DB2 Information Integrator environment for capacity planning,
problem diagnosis, and problem resolution.

This publication documents procedures for monitoring
existing DB2 II implementations for the purposes of capacity
planning. It also documents a methodology for routine and
exception monitoring of a DB2 II environment for performance
problem determination; and describes some commonly
encountered performance problem scenarios and the
step-by-step approach used in problem determination and
resolution.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. DB2 Information Integrator architecture overview
	1.1 Introduction
	1.2 Current business trends
	1.2.1 From on demand to grid computing
	1.2.2 From grid computing to data federation
	1.2.3 From data federation to information integration

	1.3 IBM’s DB2 Information Integration overview
	1.3.1 Data consolidation or placement
	1.3.2 Distributed access (federation)
	1.3.3 DB2 Information Integrator products

	1.4 DB2 Information Integrator V8.2
	1.4.1 DB2 II V8.2 overview
	1.4.2 DB2 II components
	1.4.3 Configuring the federated system
	1.4.4 Performance considerations

	1.5 DB2 Information Integrator topology considerations
	1.5.1 Dedicated federated server
	1.5.2 Collocated federated server

	Chapter 2. Introduction to performance management
	2.1 Introduction
	2.2 Performance management
	2.3 Types of monitoring
	2.3.1 Routine monitoring
	2.3.2 Online/realtime event monitoring
	2.3.3 Exception monitoring

	2.4 Problem determination methodology

	Chapter 3. Key performance drivers of DB2 II V8.2
	3.1 Introduction
	3.2 Compilation flow of a federated query
	3.3 Execution flow of a federated query
	3.4 Key performance drivers
	3.4.1 Performance factors
	3.4.2 Federated server considerations
	3.4.3 Data source considerations
	3.4.4 Efficient SQL queries
	3.4.5 Hardware and network

	Chapter 4. Performance problem determination scenarios
	4.1 Introduction
	4.2 DB2 II hypotheses hierarchy
	4.2.1 DB2 II federated database server resource constraints
	4.2.2 DB2 II resource constraints
	4.2.3 Federated server or remote data source
	4.2.4 Federated server related
	4.2.5 Remote data source related

	4.3 Monitoring best practices
	4.3.1 Performance considerations
	4.3.2 Best practices

	4.4 Problem scenarios
	4.4.1 Federated test environment
	4.4.2 Missing or incorrect statistics/index information
	4.4.3 Poorly tuned sort heap and buffer pools
	4.4.4 Missing or unavailable MQTs
	4.4.5 Incompatible data types on join columns
	4.4.6 Pushdown problems
	4.4.7 Default DB2_FENCED wrapper option with DPF

	Chapter 5. Capacity planning in an existing DB2 II environment
	5.1 Introduction
	5.2 Capacity planning assumptions
	5.3 Capacity planning procedure
	5.3.1 Capacity planning procedure overview

	5.4 Capacity planning new applications
	5.4.1 Model of different profiles of queries
	5.4.2 Determine new application workload
	5.4.3 Estimate capacity for the new application

	Appendix A. DB2 II V8.2 performance enhancements
	Introduction
	Fenced wrappers
	Parallelism enhancements
	Intra-partition parallelism in a non-DPF environment
	Inter-partition parallelism in a DPF environment with local data
	Inter-partition parallelism in a DPF environment without local data

	Updating nickname statistics
	Cache tables
	Informational constraints
	Snapshot monitor support
	Health Center alerts

	Appendix B. DB2 EXPLAIN facility with DB2 Information Integrator
	Brief review of the DB2 EXPLAIN facility
	db2exfmt overview
	EXPLAIN INSTANCE section
	SQL STATEMENT section
	Access plan graph
	OPERATOR DETAILS section
	Objects section
	Complete db2exfmt output

	Federated test environment
	db2exfmt examples involving DB2 II
	Join of nicknames referencing Oracle and SQL server
	INTRA_PARALLEL = YES (intra-partition enabled)
	Database Partition Feature (DPF) with FENCED = ‘N’
	Database Partition Feature (DPF) with FENCED = ‘Y’
	DB2_MAXIMAL_PUSHDOWN = ‘N’
	DB2_MAXIMAL_PUSHDOWN = ‘Y’
	SQL INSERT/UPDATE/DELETE

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

